Skip to main content
Log in

Separation of low levels of actinides by selective oxidation/reduction and co-precipitation with neodymium fluoride

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A systematic study of separating the actinides from each other in 1 M hydrochloric acid media has been carried out using selective oxidation/reduction processes followed by coprecipitation with neodymium fluoride. We have optimized two such procedures, one with bromate and another with permanganate, for the sequential separation of Am, Pu, Np, and U isotopes. The first procedure involves oxidation of Pu, Np, and U to +6 state in 1 M HCl media at 85° C with 30% NaBrO3 and separation from trivalent Am by collecting the latter on the first NdF3 coprecipitated source. Plutonium is then reduced and converted to +4 oxidation state with 40% NaNO2 at 85°C, while Np and U are kept oxidized with additional bromate in 50–70°C hot solution, thus separating Pu by collection on a second NdF3 source. At this stage, Np present in the filtrate is reduced with hydroxylamine hydrochloride and separated from U by collecting on a third source. Subsequently, U is reduced with 30% TiCl3 and co-precipitated on a final source. The second procedure, which employs KMnO4 in 1 M HCl media at 60–85°C for oxidizing Pu, Np, and U, and separating from Am, produced MnO2 which is collected along with Am on the coprecipitated NdF3. This MnO2 is dissolved on the filter itself with 1 mL of acidified 1.5% H2O2 without any degradation of the α-spectra. After evaporating the filtrate to destroy H2O2, Pu, Np, and U are separated by following steps similar to those in the bromate procedure. The recoveries of the actinides with both procedurés are >99%. The decontamination factors are between 103 and 104. The precision and accuracy of measurements, as expressed by the relative standard deviation of replicate analyses, are within 5%. Absolute detection limits for a one-day count on a 600 mm2 detector at 32% counting efficiency and 450 mm2 detector at 27% counting efficiency are about 2.7×10−4 and 3.2×10−4 Bq, respectively. These procedures have been applied to the analysis of actinides in environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.P. HARDY, P.W. KREY, H.L. VOLCHOK, Nature 242 (1973) 444.

    Article  Google Scholar 

  2. V.E. NOSHKIN Jr., C. GATROUSIS, Earth and Planetary Science Letters, 22 (1974) 111.

    Article  Google Scholar 

  3. G.R. CHOPPIN, Radiochim. Acta, 43 (1988) 82.

    Google Scholar 

  4. M.S. MILYUKOVA, N.I. GUSEV, I.G. SENTYURIN, I.S. SKLYARENKO, Analytical Chemistry of Plutonium, Daniel Davey & Co., Inc., New York, 1967.

    Google Scholar 

  5. G.A. BURNEY, R.M. HARBOUR, Radiochemistry of Neptunium, Nuclear Science Series: National Academy of Sciences-National Research Council, US Atomic Energy Commission, NAS-NS-3060, Oak Ridge, 1974.

  6. J.E. GRINDLER, The Radiochemistry of Uranium, Nuclear Science Series: National Academy of Sciences-National Research Council, US Atomic Energy Commission, NAS-NS-3050, Argonne, Illinois, 1962.

  7. B.F. MYASOEDOV, Radiochim. Acta, 43 (1988) 84.

    Google Scholar 

  8. P. DE REGGE R. BODEN, Nucl. Instr. Meth. Phys. Res., 223 (1984) 181.

    Article  Google Scholar 

  9. J.D. EAKINS, Nucl. Instr. Phys. Res., 223 (1984) 194.

    Article  Google Scholar 

  10. R.L. WILLIAMS, G.E. GROTHAUS, Nucl. Instr. Meth. Phys. Res., 223 (1984) 200.

    Article  Google Scholar 

  11. C.W. SILL, K.W. PUPHAL, F.D. HINDMAN, Anal. Chem., 46 (1974) 1725.

    Article  PubMed  Google Scholar 

  12. C. SARZANINI, E. MENTASTI, P. BENZI, P. VOLPE, P. SEZZANO, R. GIACOMELLI, Radiochim. Acta, 43 (1988) 153.

    Google Scholar 

  13. S. DONIVAN, M. HOLLENBACH, M. COSTELLO, Anal. Chem., 59 (1987) 2556.

    Article  Google Scholar 

  14. N.P. SINGH, P. LINSALATA, R. GENTRY, M.E. WRENN, Anal. Chim. Acta, 111 (1979) 265.

    Article  Google Scholar 

  15. N.P. SINGH, S.A. IBRAHIM, N. COHEN, M.E. WRENN, Anal. Chem., 51 (1979) 1978.

    Article  PubMed  Google Scholar 

  16. A. SAITO, G.R. CHOPPIN, Anal. Chem., 55 (1983) 2454.

    Article  Google Scholar 

  17. F.L. MOORE, Anal. Chem., 36 (1964) 2158.

    Article  Google Scholar 

  18. F.L. MOORE, Anal. Chem., 38 (1966) 510.

    Article  Google Scholar 

  19. M. YAMAMOTO, K. CHATANI, K. KOMURA, K. UENO, Radiochim. Acta, 47 (1989) 63.

    Google Scholar 

  20. R.P. BERNABEE, D.R. PERCIVAL, F.D. HINDMAN, Anal. Chem., 52 (1980) 2351.

    Article  Google Scholar 

  21. H.D. LIVINGSTON, D.R. MANN, V.T. BOWEN, Report COO-3563-27, Woods Hole Oceanographic Institution, Massachusetts, 1974.

  22. E. HOLM, R.B.R. PERSSON, Report IAEA-SM-229/96, University of Lund, Sweden, 1978.

    Google Scholar 

  23. J. KORKISCH, F. TERA, Anal. Chem., 33 (1961) 1264.

    Article  Google Scholar 

  24. E.K. HULET, R.G. GUTMACHER, M.S. COOPS J. Inorg. Nucl. Chem., 17 (1961) 350.

    Article  Google Scholar 

  25. N.A. TALVITIE, Anal. Chem., 43 (1971) 1827.

    Article  PubMed  Google Scholar 

  26. D. KNAB, Anal. Chem., 51 (1979) 1095.

    Article  Google Scholar 

  27. N.W. GOLCHERT, J. SEDLET, Radiochem. Radioanal. Letters, 12 (1972) 215.

    Google Scholar 

  28. E. MATHEW, V.M. MATKAR, K.C. PILLAI, J. Radioanal. Chem., 62 (1981) 267.

    Google Scholar 

  29. E.L. COOPER, AECL Report RC-890, Analysis of Pu, Am and Cm: Notes prepared during an IAEA expert mission to Thailand, 1992.

  30. S.G. THOMPSON, G.T. SEABORG, Process in Nuclear Energy. Series III, Process Chemistry, p. 163, 1956.

  31. J. KOOI, U. HOLLSTEIN, Health Phys., 8 (1962) 41.

    PubMed  Google Scholar 

  32. E.P. HORWITZ, R. CHIARIZIA, M.L. DIETZ, H. DIAMOND, D.M. NELSON, Anal. Chim. Acta 281 (1993) 361.

    Article  Google Scholar 

  33. E.H. APPELMAN, H. DIAMOND, E.P. HORWITZ, J.C. SULLIVAN, Radiochim. Acta, 55 (1991) 61.

    Google Scholar 

  34. F.D. HINDMAN, Anal. Chem., 55 (1983) 2460.

    Article  Google Scholar 

  35. F.D. HINDMAN, Anal. Chem., 58 (1986) 1238.

    Article  Google Scholar 

  36. C.W. SILL, R.L. WILLIAMS, Anal. Chem., 53 (1981) 412.

    Google Scholar 

  37. C.W. SILL, Nucl. Chem. Waste Management, 7 (1987) 201.

    Article  Google Scholar 

  38. C. KELLER, The Chemistry of the Transuranium Elements, Verlag Chemie, Germany, 1971.

    Google Scholar 

  39. V.A. MIKHAILOV, Analytical Chemistry of Neptunium, Halsted Press, New York, 1973.

    Google Scholar 

  40. A.S.G. MAZUMDAR, P.V. BALAKRISHNAN, R.N. SINGH Vijnana Parishad Anusandhan Patrika, 4 (1961) 149; UCRL-Trans-398(L).

    Google Scholar 

  41. L.A. CURRIE, Anal. Chem., 40 (1968) 586.

    Article  Google Scholar 

  42. E.L. COOPER, P. VILKS, M.K. HAAS, J.F. MATTIE, AECL Report RC-1150, Measurement of Radionuclide speciation in groundwater using anion exchange resins, 1994.

  43. R.W.D. KILLEY, J.O. McHUGH, D.R. CHAMP, E.L. COOPER, J.L. YOUNG, Environ. Sci. Technol., 18 (1984) 148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, R.R., Cooper, E.L. Separation of low levels of actinides by selective oxidation/reduction and co-precipitation with neodymium fluoride. Journal of Radioanalytical and Nuclear Chemistry, Articles 197, 133–148 (1995). https://doi.org/10.1007/BF02040226

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02040226

Keywords

Navigation