Skip to main content
Log in

OCS, H2S, and CS2 fluxes from a salt water marsh

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The diurnal-to-monthly behavior of the fluxes of OCS, H2S, and CS2 from a mixed-Spartina grass-covered site in a Wallops Island salt water marsh was determined through a series of experiments in August and September, 1982. Absolute flux values were determined for OCS and H2S, while only relative values were determined for CS2. The rates of emission of OCS and H2S were observed to vary diurnally and to be strongly influenced by tides. The time-averaged flux values show that such mixed-Spartina stands are insignificant (≪ 1%) global sources of H2S or CS2 and insignificant contributors to the global OCS cycle (< 1%). These results demonstrate that some marsh regions play a minor role in the global sulfur budget and, consequently, that the inclusion of such areas in extrapolations of measurements of more productive regions could lead to an overestimate of the role of salt water marshes in the global sulfur budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D. F., Farwell, S. O., Pack, M. R., and Bamesburger, W. L., 1979, Preliminary measurements of biogenic sulfur-containing gas emissions from soils, J. Air Pollut. Control Assoc. 29, 380–383.

    Google Scholar 

  • Adams, D. F., Farwell, S. O., Robinson, E., and Pack, M. R., 1980, Assessment of Biogenic Sulfur Emissions in the SURE Area, EPRI Final Report, No. EA-1516, Electric Power Research Institute, Palo Alto, CA.

    Google Scholar 

  • Adams, D. F., Farwell, S. O., Robinson, E., Pack, M., and Bamesburger, W. L., 1981, Biogenic Sulfur Source Strength, Paper No. 81-15.3, presented at the Annual Meeting of APCA, Philadelphia, PA.

  • Andreae, M. O., and Raemdonck, H., 1983, Dimethylsulfide in the surface ocean and the marine atmosphere: a global view, Science 221, 744–747.

    Google Scholar 

  • Aneja, V. P., Corse, E. W., Cupitt, L. T., King, J. C., Overton, J. H. Jr., Rader, R. E., Richards, M. H., Sher, H. J., and Whitkus, R. J., 1979a, Biogenic Sulfur Sources Strength Field Study, Northrop Services, Inc. Report No. ESC-TR-79-22, Research Triangle Park, NC.

  • Aneja, V. P., Overton, J. H.Jr., Cupitt, L. T., Durham, J. L., and Wilson, W. E. 1979b, Direct measurements of emission rates of some atmospheric biogenic sulfur compounds, Tellus 31, 174–178.

    Google Scholar 

  • Aneja, V. P., Overton, J. H.Jr., Cupitt, L. T., Durham, J. L., and Wilson, W. E., 1979c, Carbon disulfide and carbonyl sulfide from biogenic sources and their contribution to the global sulfur cycle, Nature 282, 493–496.

    Google Scholar 

  • Aneja, V. P., Overton, J. H. Jr., Cupitt, L. T., Durham, J. L., and Wilson, W. E., 1979, Measurements of Emission Rates of Carbon Disulfide from Biogenic Sources and its Possible Importance to the Stratospheric Aerosol Layer, presented at the 86th National Meeting of American Institute of Chemical Engineers, Symposium on Aerosols, Houston, TX.

  • Baas Becking, L. G. M., and Wood, E. J. F., 1955, Biological processes in the estuarine environment. I and II. Ecology of the sulfur cycle, Koninkl. Ned. Akad. Wetenschap Proc. U. B48, 160–181.

    Google Scholar 

  • Cappenberg, T. E., 1974, Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh water lake. I. Field observation, Antonie van Leeuwenhoek 40, 297–306.

    Google Scholar 

  • Carroll, M. A., 1983, An Experimental Study of the Fluxes of Reduced Sulfur Gases from a Salt Water Marsh, Doctoral thesis, Massachusetts Institute of Technology (Cambridge, Massachusetts) and National Center for Atmospheric Research (Cooperative Thesis No. 73), Boulder, CO.

  • Crutzen, P. J., 1976, The possible importance of CSO for the sulfate layer of the stratophere, Geophys. Res. Lett. 3, 73–76.

    Google Scholar 

  • Eriksson, E., 1960, The yearly circulation of chloride and sulfur in nature; meteorological, geochemical, and pedological implications, 2, Tellus 12, 63–109.

    Google Scholar 

  • Eriksson, E., 1963, The yearly circulation of sulfur in nature, J. Geophys. Res. 68, 4001–4008.

    Google Scholar 

  • Ferry, J. G., and Peck, H. D. Jr., 1977, Relationships between sulfate reduction and methane production in salt marsh sediments, Bacteriol. Proc. 236.

  • Foulger, B. E. and Simmonds, P. G., 1979, Drier for field use in the detection of trace atmospheric gases, Anal. Chem. 51, 1089–1090.

    Google Scholar 

  • Friend, J. P., Chemistry of the Lower Atmosphere (S. I. Rasool, ed.), Plenum Press, N.Y., pp. 177–201.

  • Garrels, R. M., Mackenzie, F. T., and Hunt, C., 1973, Chemical Cycles and the Global Environment, William Kaufmann, Los Altos, California.

    Google Scholar 

  • Goldberg, A. B., Maroulis, P. J., Wilner, L. A., and Bandy, A. R., 1981, Studies of H2S emissions from a salt water marsh, Atmos. Env. 15, 11–18.

    Google Scholar 

  • Gooch, E. L., 1968, Hydrogen sulfide production and its effect on inorganic phosphate release from the sediments of the Canary Creek marsh. M. S. thesis, University of Delaware, Newark, Del.

  • Goodwin, J. T., Wakeham, S. G., Dacey, J. W. H., and Howes, B. C., 1982, Dimethyl Sulfide in Salt Marsh Pore Waters, presented at the Biogeochemistry of Particulates and Sediments Section of the AGU Meeting, San Francisco, CA.

  • Granat, L., Rodhe, H., and Hallberg, R. O., 1976, Nitrogen, Phosphorus and Sulphur — Global Cycles, (B. H. Svensson and R. Soderlund, eds.), SCOPE Report 7, Ecol. Bull., 22, pp. 89–134.

  • Gravenhorst, G., 1983, Der Einfluß von Wolken und Niederschlag auf die vertikale Verteilung atmosphärischer Spurenstoffe in einem eindimensionalen reaktionskinetischen Modell. Berichte des Instituts für Meteorologie und Geophysik der Universität Frankfurt a.M. Nr. 52, Tab. 14.

  • Hansen, M. H., Ingvorsen, K., and Jørgensen, B. B., 1978, Mechanisms of hydrogen sulfide release from coastal marine sediments to the atmosphere. Limnol. Oceanogr. 23, 68–76.

    Google Scholar 

  • Hill, F. B., Aneja, V.P., and Felder, R. M., 1978, A technique for measurement of biogenic sulfur emission fluxes, Environ. Sci. and Health 13, 199–225.

    Google Scholar 

  • Hitchcock, D. R., 1978, A problem with flux chamber measurements of biogenic sulfur emissions, unpublished manuscript.

  • Howes, B. L., Howarth, R. W., Teal, J. M., and Valiela, I., 1981, Oxidation-reduction potentials in a salt marsh: Spatial patterns and interactions with primary production, Limnol. Oceanogr. 26, 350–360.

    Google Scholar 

  • Ingvorsen, K. and Jørgensen, B. B., 1982, Seasonal variation in H2S emission to the atmosphere from intertidal sediments in Denmark, Atmos. Env. 16, 855–865.

    Google Scholar 

  • Ivanov, M. V., 1981, Some Perspectives of the Major Biogeochemical Cycles (G. E. Likens, ed.), SCOPE Report 17, John Wiley and Sons, pp. 61–78.

  • Junge, C. E., 1963a, Sulfur in the atmosphere, J. Geophys. Res. 68, 3975–3976.

    Google Scholar 

  • Junge, C. E., 1963b, Air Chemistry and Radioactivity, Academic Press, New York, New York.

    Google Scholar 

  • Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L., and Martell, E. A., 1972, The sulfur cycle, Science 175, 587–596.

    Google Scholar 

  • King, G. M., and Skyring, G. W., 1977, A seasonal study of methanogenesis in a Georgia salt marsh, Bacteriol. Proc. 243.

  • King, G. M. and Wiebe, W. J., 1978, Methane release from soils of a Georgia salt marsh, Geochim. Cosmochim. Acta 42, 334–348.

    Google Scholar 

  • King, G. M., Klug, M. J., Wiegert, R. G., and Chalmers, A. G., 1982, Relation of soil water movement and sulfide concentration to Spartina alterniflora production in a Georgia salt marsh, Science 218, 61–63.

    Google Scholar 

  • Kuster, W. C. and Goldan, P. D., 1986, Quantitation of the losses of gaseous sulfur compounds to enclosure walls, Environ Sci. Technol. (submitted).

  • Linthurst, R. A., 1979, The effect of aeration on the growth of Spartina alterniflora Loisel, Am. J. Botany 66, 685–691.

    Google Scholar 

  • Linthurst, R. A. and Seneca, E. D., 1980, The effects of standing water and drainage potential on the Spartina Alterniflora substrate complex in the North Carolina salt marsh, Est. and Cstl. Mar. Sci. 11, 41–52.

    Google Scholar 

  • Lovelock, J. E., 1974, CS2 and the natural sulphur-cycle, Nature 248, 625–626.

    Google Scholar 

  • Maroulis, Peter J., and Bandy, Alan R., 1977, Estimate of the contribution of biologically produced dimethyl sulfide to the global sulfur cycle, Science 196, 647–648.

    Google Scholar 

  • Maroulis, P., Torres, A., and Bandy, A., 1977, Atmospheric concentrations of carbonyl sulfide in the southwestern and eastern United States, Geophys. Res. Lett. 4, 510–512.

    Google Scholar 

  • Mendelssohn, I. A. and Seneca, E. C., 1980, The influence of soil drainage on the growth of salt marsh cordgrass Spartina alterniflora in North Carolina, Est. and Cstl. Mar. Sci. 11, 27–40.

    Google Scholar 

  • Moss, M. R., 1978, Sulfur in the Environment, Part I: The Atmospheric Cycle (J. O. Nriagu, ed.), John Wiley and Sons, N.Y., N.Y., pp. 23–50.

    Google Scholar 

  • Oshrain, R. L., 1977, Aspects of Anaerobic Sulfur Metabolism in Salt Marsh Soils, Masters thesis, University of Georgia, Athens, GA.

  • Pearson, C. D. and Hines, W. J., 1977, Determination of hydrogen sulfide, carbonyl sulfide, carbon disulfide, and sulfur dioxide in gases and hydrocarbon streams by gas chromatography/flame photometric detection, Anal. Chem. 49, 123–126.

    Google Scholar 

  • Rasmussen, R. A., Khalil, M. A. K., and Hoyt, S. D., 1982, The oceanic source of carbonyl sulfide (OCS), Atmos. Env. 16, 1591–1594.

    Google Scholar 

  • Robinson, E. and Robbins, R., 1968, Emissions, concentrations and fate of gaseous atmospheric pollutants, Stanford Research Inst., Menlo Park, California.

    Google Scholar 

  • Robinson, E. and Robbins, R., 1970, Gaseous sulphur pollutants from urban and natural sources, J. Air Pollut. Control Assoc. 20, 303–306.

    Google Scholar 

  • Schwarzenbach, R. P., Bromund, R. H., Gischwend, P. M., and Zafiriou, O. C., 1978, Volatile organic compounds in coastal seawater, Organic Geochem. 1, 93–107.

    Google Scholar 

  • Skyring, G. W., Oshrain, R. L., and Wiebe, W. J., 1979, Sulfate reduction rates in Georgia marshland soils, Geomicrobio. J. 1, 389–400.

    Google Scholar 

  • Sivanesaw, A. and Manners, J. G., 1972, Bacteria of muds colonized by Spartina townsendii and their possible role in Spartina die back, Plant and Soil 36, 349–361.

    Google Scholar 

  • Steudler, P. A. and Peterson, B. J., 1984, Contribution of gaseous sulphur from salt marshes to the global sulphur cycle, Nature 311, 455–457.

    Google Scholar 

  • Steudler, P. A. and Peterson, B. J., 1985, Annual cycle of gaseous sulfur emissions from a New England Spartina Alterniflora marsh, Atmos. Env. 19, 1,411–1,416.

    Google Scholar 

  • Sze, N. D. and Ko, M. K. W., 1978, Stratospheric sulfur cycle: A theoretical model, unpublished manuscript.

  • Thorsnberry, W. L.Jr., 1971, Isothermal gas chromatographic separation of carbon dioxide, carbon oxysulfide, hydrogen sulfide, and sulfur dioxide, Anal. Chem., 43, 452–453.

    Google Scholar 

  • Turco, R. P., Whitten, R. C., Toon, O. B., Pollack, J. B., and Hamill, P., 1980, OCS, stratospheric aerosols and climate, Nature 283, 283–286.

    Google Scholar 

  • Várhelyi, G. and Gravenhorst, G., 1981, An attempt to estimate biogenic sulfur emission into the atmosphere, Idójárás 85, 126–133.

    Google Scholar 

  • Winfrey, M. R. and Zeikus, J. G., 1977, Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments, Appl. Environ. Microbiol. 33, 275–281.

    Google Scholar 

  • Zehnder, A. J. B. and Zinder, S. H., 1980, Vol. 1, part a, Handbook of Env. Chem.: “The Natural Environment and the Biogeochemical Cycles”, Springer-Verlag, Berlin, Heidelberg, pp. 105–145.

    Google Scholar 

  • Zobell, C. E. and Rittenberg, S. E., 1948, Sulfate-reducing bacteria in marine sediments, J. Mar. Res. 7, 602–617.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, M.A., Heidt, L.E., Cicerone, R.J. et al. OCS, H2S, and CS2 fluxes from a salt water marsh. J Atmos Chem 4, 375–395 (1986). https://doi.org/10.1007/BF00053811

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00053811

Key words

Navigation