Skip to main content
Log in

Interactions Between Environmental Selenium and Sulphoxy Radicals

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Chemical interactions between sulphoxy radical anions and elemental Se were investigated to show the influence of SO2 pollution on the atmospheric fate of selenium. Laboratory experiments were performed with elemental Se plates or fine powder exposed to sulphoxy radicals formed in situ during the autoxidation of SO2 dissolved in water. Impacts of the radicals were followed examining the topographic surface changes of Se (atomic force microscopy, AFM) and measuring the S(IV) autoxidation rate, essentially decreased in the presence of Se (conductometry). The experiments showed that remobilization of water insoluble selenium (elemental Se) may take place not only in atmosphere (cloud waters), but also in surface waters, soil and sediments contacting with SO2 polluted air. By scavenging radicals, selenium causes the retardation of the S(IV) autoxidation to sulphuric acid (acid rain), thus contributing to long-distance transport of unreacted S(IV). The more general problem of sulphoxy radical-induced atmospheric corrosion has been brought forward into consideration, as the radicals appear capable to damage diverse solid surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amouroux, D., Donard, O. F. X., and Rapsomanikis, S., 1994: Sea-to-air selenium fluxes in the eastern mediterranean sea, in P. M. Borrell, P. Borrell, T. Cvitaš, W. Seiler (eds), Proc. EUROTRAC Symp. 94, Transport and Transformation of Pollutants in the Troposphere, SPB Academic Publishing, The Hague, pp. 573-577.

    Google Scholar 

  • Astarita, G., 1967: Mass Transfer with Chemical Reation, Elsevier, Amsterdam, Chapters 1-6.

    Google Scholar 

  • Ball, S. and Milne, J., 1995: Studies on the interaction of selenite and selenium with sulfur donors. Part 3: Sulfite, Can. J. Chem. 73, 716-724.

    Google Scholar 

  • Barker, J. R., 1995: A brief introduction to atmospheric chemistry, in J. R. Barker (ed.), Progress and Problems in Atmospheric Chemistry, World Scientific, Singapore, pp. 27-29.

    Google Scholar 

  • Besser, J. M., Huckins, J. N., Little, E. E., and La Point, T. W., 1989: Distribution and bioaccumulation of selenium in aquatic microcosms, Environ. Pollut. 62, 1-12.

    Google Scholar 

  • Borrell, P., Builtjes, P. J. H., Grennfelt, P., and Hov, O. (eds), 1997: Photo-Oxidants, Acidification and Tools: Policy Applications of EUROTRAC Results, Springer, Berlin, pp. 1-11.

    Google Scholar 

  • Bronikowski, T., Pasiuk-Bronikowska, W., and Ulejczyk, M., 1990: Coal desulphurization facilitated by coupled autoxidation of sulphur dioxide, in R. Markuszewski and T. D. Wheelock (eds), Processing and Utilization of High-Sulfur Coals III, Elsevier, Amsterdam, pp. 425-435.

    Google Scholar 

  • Burkhard, E. G., Ghauri, B. M., Dutkiewicz, V. A., and Husain, L., 1995: A multielement tracer technique for the determination of SO2 oxidation in clouds, J. Geophys. Res. 100, 26051-26059.

    Google Scholar 

  • Conte, C., Devitofrancesco, G., and Starace, G., 1976: Behaviour of SO2 in atmosphere–interactions with the particulate matter, in M. M. Benarie, (ed.), Atmospheric Pollution, Elsevier, Amsterdam, pp. 243-253.

    Google Scholar 

  • Cooper, W. Ch. and Westbury, R. A., 1974: The stucture of selenium, in R. A. Zingaro and W. Ch. Cooper (eds), Selenium, Van Nostrand Reinhold, New York, pp. 87-147.

    Google Scholar 

  • Cooper, W. Ch., Bennett, K. G., and Croxton, F. C., 1974: The history, occurrence and properties of selenium, in R. A. Zingaro and W. Ch. Cooper (eds), Selenium, Van Nostrand Reinhold, New York, pp. 1-30.

    Google Scholar 

  • Dutkiewicz, V. A. and Husain, L., 1998: Inefficient scavenging of aerosol sulfate by non-precipitating clouds in polluted air, Atmos. Environ. 32, 2793-2801.

    Google Scholar 

  • Fan, T. W.-M., Lane, A. N., and Higashi, R. M., 1997: Selenium biotransformations by a euryhaline microalga isolated from a saline evaporation pond, Environ. Sci. Technol. 31, 569-576.

    Google Scholar 

  • Ghosh-Dastidar, A., Mahuli, S., Agnihotri, R., and Fan, L.-S., 1996: Selenium capture using sorbent powders: mechanism of sorption by hydrated lime, Environ. Sci. Technol. 30, 447-452.

    Google Scholar 

  • Gutenmann W. H., Bache C. A., Youngs W. D., and Lisk D. J., 1976: Selenium in fly ash, Science 191, 966-967.

    Google Scholar 

  • Hayon, E., Treinin, A., and Wilf, J., 1972: Electronic spectra, photochemistry and autoxidation mechanism of the sulfite-bisulfite-pyrosufite systems. The SO 2 , SO 3 , SO 4 and SO 5 radicals, J. Am. Chem. Soc. 94, 47-57.

    Google Scholar 

  • Herrmann, H., Jacobi, H.-W., Raabe, G., Reese, A., and Zellner, R., 1996: Laboratory studies on the reactivity of NO and SO 4 radicals towards aromatics in aqueous solution, in Ph. Mirabel (ed.), Homogeneous and Heterogeneous Chemical Processes in the Troposphere, EUR 16766, ECSC-EC-EAEC, Brussels, pp. 166-171.

  • Hoffmann, M. R., 1990: Catalysis in aquatic environments, in W. Stumm (ed.), Aquatic Chemical Kinetics, John Wiley and Sons, New York, pp. 79-96.

    Google Scholar 

  • Huie, R. E., 1995: Free radical chemistry of atmospheric aqueous phase, in J. R. Barker (ed.), Progress and Problems in Atmospheric Chemistry, World Scientific, Singapore, pp. 397-402.

    Google Scholar 

  • Jennings, P. H. and Yannopoulos, J. C., 1974: Recovery and refining of selenium, in R. A. Zingaro and W. Ch. Cooper (eds), Selenium, Van Nostrand Reinhold, New York, pp. 31-86.

    Google Scholar 

  • Klebanov, G. S. and Ostapkevich, N. A., 1960: Interaction of selenium with aqueous solutions of sulfites of alkaline metals (in Rus.), Zh. Prikl. Khim. 33, 1957-1961.

    Google Scholar 

  • Martens, D. A. and Suarez, D. I., 1997: Selenium speciation of solid/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry, Environ. Sci. Technol. 31, 133-139.

    Google Scholar 

  • Neta, P., Huie, R. E., and Ross, A. B., 1988: Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data 17, 1027-1284.

    Google Scholar 

  • Pasiuk-Bronikowska, W., Bronikowski, T., and Ulejczyk, M., 1997: From trophospheric SO2 autoxidation to sulfur redistribution in ecosystems, in P. M. Borrell, P. Borrell, K. Kelly, T. Cvitaš, W. Seiler (eds), Transport and Transformation of Pollutants in the Troposphere. Proc. EUROTRAC Symp. '96. Vol. 1, Computational Mechanics Publications, Southampton, pp. 395-399.

    Google Scholar 

  • Pasiuk-Bronikowska, W., 1996: Influence of transients of aqueous SO2 autoxidation on atmospheric pollutants of natural origin, in Ph. Mirabel (ed.), Homogeneous and Heterogeneous Chemical Processes in the Troposphere, EUR 16766, ECSC-EC-EAEC, Brussels, pp. 96-101.

  • Pasiuk-Bronikowska, W., Bronikowski, T., and Królik, J., 1996: Selective elimination of ·SO 3 by stable radicals, in Ph. Mirabel (ed.), Homogeneous and Heterogeneous Chemical Processes in the Troposphere, EUR 16766, ECSC-EC-EAEC, Brussels, pp. 102-107.

  • Pasiuk-Bronikowska, W., Bronikowski, T., and Ulejczyk, M., 1989: Chemistry of coal desulphurization under mild conditions, Bull. Pol. Acad. Sci. Chem. 37, 73-80.

    Google Scholar 

  • Pasiuk-Bronikowska, W., Bronikowski, T., and Ulejczyk, M., 1992: Mechanism and kinetics of autoxidation of calcium sulfite slurries, Environ. Sci. Technol. 26, 1976-1981.

    Google Scholar 

  • Pasiuk-Bronikowska, W., Bronikowski, T., and Ulejczyk, M., 1995a: The role of aqueous SO2 in formation of airborne surfactants, in K. H. Becker (ed.), Tropospheric Oxidation Mechanisms, EUR 16171, ECSC-EC-EAEC, Brussels, pp. 415-420.

  • Pasiuk-Bronikowska, W., Bronikowski, T., and Ulejczyk, M., 1995b: Oxidation of coal refuse in the presence of tetravalent sulfur, Fuel 74, 1664-1670.

    Google Scholar 

  • Pasiuk-Bronikowska, W., Bronikowski, T., and Ulejczyk, M., 1997: Solubilization of organics in water coupled with sulphite autoxidation, Wat. Res. 31, 1767-1775.

    Google Scholar 

  • Ross, H. B., 1985: An atmospheric selenium budget for the region 30° N to 90° N, Tellus 37B, 78-90.

    Google Scholar 

  • Scott, M. J. and Morgan, J. J., 1996: Reaction at oxide surfaces. 2. Oxidation of Se(IV) by synthetic birnessite, Environ. Sci. Technol. 30, 1990-1996.

    Google Scholar 

  • Tikkanen, M. H. and Ylãsaari, S., 1973: Corrosion problems as a result of air pollution, in G. Lindner and K. Nyberg (eds), Environmental Engineering, Reidel, Dordrecht, pp. 99-100.

    Google Scholar 

  • Zhang, Y. and Moore, J. N., 1996: Selenium fractionation and speciation in a wetland system, Environ. Sci. Technol. 30, 2613-2619.

    Google Scholar 

  • Zhang, Y. and Moore, J. N., 1997: Environmental conditions controlling selenium volatilization from a wetland system, Environ. Sci. Technol. 31, 511-517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronikowski, T., Pasiuk-Bronikowska, W., Ulejczyk, M. et al. Interactions Between Environmental Selenium and Sulphoxy Radicals. Journal of Atmospheric Chemistry 35, 19–31 (2000). https://doi.org/10.1023/A:1006227327933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006227327933

Navigation