Skip to main content
Log in

Evaluation of a catalytic reduction technique for the measurement of total reactive odd-nitrogen NO y in the atmosphere

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A catalytic reduction technique for the measurement of total reactive odd-nitrogen NO y in the atmosphere was evaluated in laboratory and field tests. NO y component species include NO, NO2, NO3, HNO3, N2O5, CH3COO2NO2(PAN), and particulate nitrate. The technique utilizes the reduction of the higher oxides to NO in reaction with CO on a metal catalyst and the subsequent detection of NO by chemiluminescence produced in reaction with O3. The efficiency and linearity of the conversion of the principal NO y species were examined for mixing ratios in the range of 0.1 to 100 parts per billion by volume (ppbv). Results of tests with Au, Ni, and stainless steel as the catalyst in the temperature range of 25–500°C showed Au to be the preferred catalyst. NH3, HCN, N2O, CH4, and various chlorine and sulfur compounds were checked as possible sources of NO y interference with the Au catalyst. The effects of pressure, O3, and H2O on NO y conversion were also examined. The results of the checks and tests in the laboratory showed the technique to be suitable for initial NO y measurements in the atmosphere. The technique was subsequently tested in ambient air at a remote ground-based field site located near Niwot Ridge, Colorado. The results of conversion and inlet tests made in the field and a summary of the NO y data are included in the discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae M. O. and Raemdonck H., 1983, Dimethyl sulfide in the surface ocean and the marine atmosphere: A global view, Science 221, 744–747.

    Google Scholar 

  • Arin L. M. and Warneck P., 1972, Reaction of ozone with carbon monoxide, J. Phys. Chem. 76, 1514–1516.

    Google Scholar 

  • Ayers G. P. and Gras J. L. 1980, Ammonia gas concentrations over the Southern Ocean, Nature 284, 539–540.

    Google Scholar 

  • Bassett M. E. and Seinfeld J. H., 1984, Atmospheric equilibrium model of sulfate and nitrate aerosols—II. Particle size analysis, Atmos. Environ. 18, 1163–1170.

    Google Scholar 

  • Black F. M. and Sigsby J. E., 1974, Chemiluminescent method for NO and NO x (NO+NO2) analysis, Environ. Sci. Technol. 8, 149–152.

    Google Scholar 

  • Bollinger, M. J., 1982, Chemiluminescent measurements of the oxides of nitrogen in the clean troposphere and atmospheric chemistry implications, PhD. Thesis, University of Colorado, Boulder, Colorado.

  • Bollinger M. J., Sievers R. E., Fahey D. W., and Fehsenfeld F. C., 1983, Conversion of nitrogen dioxide, nitric acid, and n-propyl nitrate to nitric oxide by gold-catalyzed reduction with carbon monoxide, Anal. Chem. 55, 1980–1986.

    Google Scholar 

  • Bollinger M. J., Hahn C. J., Parrish D. D., Murphy P. C., Albritton D. L., and Fehsenfeld F. C., 1984, NO x measurements in clean continental air and analysis of the contributing meteorology, J. Geophys. Res. 89, 9623–9631.

    Google Scholar 

  • Breitenbach L. P. and Shelef M., 1973, Development of a method for the analysis of NO2 and NH3 by NO-measuring instruments, J. Air Pollut. Control. Assoc. 23, 128–131.

    Google Scholar 

  • Cant N. W., and Fredrickson P. W., 1975, Silver and gold catalyzed reactions of carbon monoxide with nitric oxide and with oxygen, J. Catalysis 37, 531–539.

    Google Scholar 

  • Cicerone R. J., and Zellner R., 1983, The atmospheric chemistry of hydrogen cyanide (HCN), J. Geophys. Res. 88, 10689–10696.

    Google Scholar 

  • Coffey M. T., Mankin W. G., and Cicerone R. J., 1981, Spectroscopic detection of stratospheric hydrogen cyanide, Science 214, 333–335.

    Google Scholar 

  • Davies C. N., 1966, Deposition from moving aerosols, in C. N. Davies (ed.), Aerosol Science, Academic Press, New York, pp. 393–446.

    Google Scholar 

  • Fahey D. W., Eubank C. S., Hübler G., and Fehsenfeld F. C., 1985, A calibrated source of N2O5, Atmos. Environ. 19, 1883–1890.

    Google Scholar 

  • Fahey, D. W., Hübler, G., Williams, E. J., Parrish, D. D., Norton, R. B., Murphy, P. M., and Fehsenfeld, F. C., 1986, Reactive nitrogen species in the troposphere: Measurements of NO, NO2, HNO3, particulate nitrate, peroxyacetyl nitrate (PAN), O3, and total reactive odd-nitrogen (NO y ) at Niwot Ridge, Colorado, J. Geophys. Res. (submitted).

  • Farmer J. C. and Dawson G. A., 1982, Condensation sampling of soluble atmospheric trace gases, J. Geophys. Res. 87, 8931–8942.

    Google Scholar 

  • Fehsenfeld F. C., Bollinger M. J., Liu S. C., Parrish D. D., McFarland M., Trainer M., Kley D., Murphy P. C., and Albritton D. L., 1983, A study of ozone in the Colorado mountains, J. Atmos. Chem. 1, 87–105.

    Google Scholar 

  • Gay B. W., Noonan R. C., Bufalini J. J., and Hanst P. L., 1976, Photochemical synthesis of peroxyacyl nitrates in gas phase via chlorine aldehyde reaction, Environ. Sci. Technol. 10, 82–85.

    Google Scholar 

  • Gaffney J. S., Fajer R., and Senum G. I., 1984, An improved procedure for high purity gaseous peroxyacyl nitrate production: Use of heavy lipid solvents, Atmos. Environ. 18, 215–218.

    Google Scholar 

  • Gilbert M., 1958, Kinetics of hydrazine decomposition in a laminar non-isothermal flow, Comb. and Flame 2, 149–156.

    Google Scholar 

  • Goldan P. D., Fehsenfeld F. C., and Phillips M. P., 1982, Detection of carbon monoxide at ambient levels with an N2O-sensitized electron-capture detector, J. Chromatogr. 239, 115–126.

    Google Scholar 

  • Goldan P. D., Kuster W. C., Albritton D. L., Fehsenfeld F. C., Connell P. S., and Norton R. B., 1983, Calibration and tests of the filter-collection method for measuring clean-air, ambient levels of nitric acid, Atmos. Environ. 17, 1355–1364.

    Google Scholar 

  • Gormley P. G. and Kennedy M., 1949, Diffusion from a stream flowing through a cylindrical tube, Proc. R. Ir. Acad. Sect A 52A, 163–169.

    Google Scholar 

  • Hodgeson, J. A., Bell, J. P., Rehme, K. A., Krost, K. J., and Stevens, R. K., 1971, Application of a chemiluminescence detector for the measurement of total oxides of nitrogen and ammonia in the atmosphere, Joint Conference on Sensing of Environmental Pollutants, Paper No. 71-1067, Palo Alto, CA.

  • Hoell J. M., Gregory G. L., Carroll M. A., McFarland M., Ridley B. A., Davis D. D., Bradshaw J., Rodgers M. O., Torres A. L., Sachse G. W., Hill G. F., Condon E. P., Rasmussen R. A., Campbell M. C., Farmer J. C., Sheppard J. C., Wang C. C., and Davis L. I. 1984, An intercomparison of carbon monoxide, nitric oxide, and hydroxyl measurement techniques: Overview of results, J. Geophys. Res. 89, 11819–11825.

    Google Scholar 

  • Holton J. R., Danielsen E. F., and Russell P. B., 1984, The NASA STE project, Eos Transactions 65, 449–450.

    Google Scholar 

  • Huebert B. J. and Lazrus A. L., 1980, Tropospheric gas-phase and particulate nitrate measurements, J. Geophys. Res. 85, 7322–7328.

    Google Scholar 

  • John W. and Reischl G., 1978, Measurements of the filtration efficiencies of selected filter types, Atmos. Environ. 12, 2015–2019.

    Google Scholar 

  • Johnston, H. S., 1968, Gas phase reaction kinetics of neutral oxygen species, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), Vol. 20, p. 46.

  • Joseph D. W. and Spicer C. W., 1978, Chemiluminescence method for atmospheric monitoring of nitric acid and nitrogen oxides, Anal. Chem. 50, 1400–1403.

    Google Scholar 

  • Kley, D. and McFarland, M., 1980, Chemiluminescence detector for NO and NO2, Atmos. Technol., No. 12, 63–69.

    Google Scholar 

  • Kley D., Drummond J. W., McFarland M., Liu S. C., 1981, Tropospheric profiles of NO x , J. Geophys. Res. 86, 3153–3161.

    Google Scholar 

  • Liu B. Y. H. and Lee K. W., 1976, Efficiency of membrane and Nuclepore filters for submicrometer aerosols, Environ. Sci. Technol. 10, 345–350.

    Google Scholar 

  • Logan J. A., Prather M. J. Wofsy S. C., and McElroy M. B., 1981, Tropospheric chemistry: A global perspective, J. Geophys. Res. 86, 7210–7254.

    Google Scholar 

  • Logan J. A., 1983, Nitrogen oxides in the troposphere: Global and regional budgets, J. Geophys. Res. 88, 10785–10807.

    Google Scholar 

  • Maroulis P. J., Torres A. L., Goldberg A. B., and Bandy A. R., 1980, Atmospheric SO2 measurements on Project Gametag, J. Geophys. Res. 85, 7345–7349.

    Google Scholar 

  • Mendenhall G. D., Golden D. M., and Benson S. W., 1975, The very-low-pressure pyrolysis (VLPP) of n-propyl nitrate, tert-butyl nitrate, and methyl nitrite. Rate constants for some alkoxy radical reactions, Int. J. Chem. Kin. 7, 725–737.

    Google Scholar 

  • Morris E. D. Jr. and Niki H., 1970, Chemiluminescent reactions of iron and nickel carbonyls with ozone, J. Am. Chem. Soc. 92, 5741–5742.

    Google Scholar 

  • NASA Panel for Data Evaluation, 1983, Chemical kinetic and photochemical data for use in stratospheric modelling, #6, JPL Publication 83–62; Jet Propulsion Laboratory, Pasadena, CA.

    Google Scholar 

  • Norton R. B., Roberts J. M., and Huebert B. J., 1983, Tropospheric oxalate, Geophys. Res. Lett. 10, 517–520.

    Google Scholar 

  • Ridley B. A., Luu S. H., Hastie D. R., Schiff H. I., McConnell J. C., Evans W. F. J., McElroy C. T., Kerr J. B., Fast H., and O'Brien R. S. 1984, Stratospheric odd nitrogen: Measurements of HNO3, NO, NO2, and O3 near 54° N in winter, J. Geophys. Res. 89, 4797–4820.

    Google Scholar 

  • Rinsland C. P., Smith M. A. H., Risland P. L., Goldman A., Brualt J. W., and Stokes G. M., 1982, Ground-based infrared spectroscopic measurements of atmospheric hydrogen cyanide, J. Geophys. Res. 87, 11119–11125.

    Google Scholar 

  • Schmeltekopf A. L., Goldan P. D., Henderson W. R., Harrop W. J., Thompson T. L., Fehsenfeld F. C., Schiff H. I., Crutzen P. J., Isaksen I. S. A., and Ferguson E. E., 1975, Measurements of stratospheric CFCl3 Geophys. Res. Lett. 2, 393–396.

    Google Scholar 

  • Singh H. B., and Salas L. J., 1983a, Methodology for the analysis of peroxyacetyl nitrate (PAN) in the unpolluted atmosphere, Atmos. Environ. 17, 1507–1516.

    Google Scholar 

  • Singh H. B., Salas L. J., and Stiles R. E., 1983b, Selected man-made halogenated chemicals in the air and oceanic environment, J. Geophys. Res. 88, 3675–3683.

    Google Scholar 

  • Singh H. B., Salas L. J., and Stiles R. E., 1983c, Methyl halides in and over the eastern Pacific (40°N–32°S), J. Geophys. Res. 88, 3684–3690.

    Google Scholar 

  • Solomon S. and Garcia R. R., 1983, On the distribution of nitrogen dioxide in the high-latitude stratosphere, J. Geophys. Res. 88, 5229–5239.

    Google Scholar 

  • Spicer C. W., 1977, The fate of nitrogen oxides in the atmosphere in J. N. Pitts Jr. and R. L. Metcalf (eds.) Advances in Environmental Science and Technology, Vol. 7, John Wiley, New York, 182–197.

    Google Scholar 

  • Stelson A. W., Friedlander S. K., and Seinfeld J. H., 1979, A note on the equilibrium relationship between ammonia and nitric acid and particulate ammonium nitrate, Atmos. Environ. 13, 369–371.

    Google Scholar 

  • Torres A. L., Maroulis P. J., Goldberg A. B., and Bandy A. R., 1980, Atmospheric OCS measurements on Project Gametag, J. Geophys. Res. 85, 7357–7360.

    Google Scholar 

  • WMO Global ozone research and monitoring project, Report No. 11, 1981, The Stratosphere 1981: Theory and Measurements, World Meteorological Organization, Geneva, Switzerland.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahey, D.W., Eubank, C.S., Hübler, G. et al. Evaluation of a catalytic reduction technique for the measurement of total reactive odd-nitrogen NO y in the atmosphere. J Atmos Chem 3, 435–468 (1985). https://doi.org/10.1007/BF00053871

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00053871

Key words

Navigation