Skip to main content
Log in

Long-Term Measurements of Light Hydrocarbons (C2–C5) at Schauinsland (Black Forest)

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Long-term measurements of light hydrocarbons(C2–C5 HC‘s) were performed in the courseof the EUROTRAC sub-project TOR (Tropospheric Ozone Research) in thesouthern part of the Black Forest in southwest Germany. The measurementscover a time period of five years (January 1989–January 1994) and theair samples were analyzed onsite by an automated GC-system. Pronouncedannual cycles with maxima in late winter and minima in late summer wereobserved in the case of the slowly reacting hydrocarbons ethane, propane andacetylene, reflecting the fact that the seasonal variation of these speciesis photochemically driven. For the shorter lived compounds the seasonalvariations are considerably weaker, connected with a stronger scatter of theindividual measurements, which is caused by different distances to theirmain sources for different wind vectors as well as by varying sourcestrengths. From a detailed characterization of the hydrocarbon patterns theinfluence of two different sources could be distinguished. An extrapolationto photochemical age of zero and completion of our data with those from aspeciated VOC inventory yields an estimated [VOC]/NOx sourceratio for Schauinsland of ≈5 [ppbC/ppb]. Comparable[VOC]/NOx ratios are observed in automobile exhaust gasesunder low speed conditions, which points to the important role of trafficunder conditions, when freshly polluted air masses from a near-by city areadvected to the site. From an investigation of the photochemical age of theadvected air masses it becomes clear that there must exist biogenic sourcesof light olefins in the vicinity of the observatory during the vegetationperiod. For propene and the butenes we are able to estimate a lower limit oftheir contributions in terms of reactivity to the total reactivity(∑ [HC](i)⋅ k_OH(i),i=C2-C5) of the measured hydrocarbons. Forlowest pollution levels in summer (acetylene <300 ppt, about 40%of the summer values) this source is found to be responsible for15–20% of the total C2–C5reactivity observed at Schauinsland. On the average, this source accountsfor 5–10% of the total C2–C5reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., and Troe, J., 1992: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV, Atmos. Environ. 26, 1187–1230.

    Google Scholar 

  • Atlas, E. L., Ridley, B. A., Hübler, G., Walega, G. J., Carroll, M. A., Montzka, D. D., Huebert, B. J., Norton, R. B., Grahek, F. B., Schauffler, S., 1992: Partitioning and budget of NOy species during the Mauna Loa photochemistry experiment, J. Geophys. Res. 95/D10, 10449–10462.

    Google Scholar 

  • Attmannspacher, W., Hartmannsgruber, R., and Lang, P., 1984: Langzeittendenzen des Ozons der Atmosphäre aufgrund der 1967 begonnenen Ozonmeßreihen am meteorologischen Observatorium Hohenpeißenberg, Meteorol. Rdsch. 37, 193–199.

    Google Scholar 

  • Bailey, J. C., Schmidl, B., and Williams, M. J., 1990: Speciated hydrocarbon emissions from vehicles operated over the normal speed range on the road, Atmos. Environ. 24A, 43–52.

    Google Scholar 

  • Bottenheim, J.W. and Shepherd, M. F., 1995: C2–C6 hydrocarbon measurements at four rural locations across Canada, Atmos. Environ. 29(6), 647–664.

    Google Scholar 

  • Bunce, N. J., Nakai, J. S., and Yawching, M., 1991: A model for estimating the rate of chemical transformation of a VOC in the troposphere by two pathways: photolysis by sunlight and hydroxyl radical attack, Chemosphere 22, 305–315.

    Google Scholar 

  • Carroll, M. A., Thompson, A. M., 1995: NOx in the nonurban troposphere, in I. Barker (ed.), Current Problems and Progress in Atmospheric Chemistry, Advanced series in Physical Chemistry Vol. 3, World Publish, Singapore, New Jersey, Hong Kong.

    Google Scholar 

  • Chameides, W. L. and Walker, J. C. G., 1973: A photochemical theory of tropospheric ozone, J. Geophys. Res. 78, 8751–8760.

    Google Scholar 

  • Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D. R., Rasmussen, R. A., Zimmerman, P., Greenberg, J., Middleton, P., and Wang, T., 1992: Ozone precursor relationships in the ambient atmosphere, J. Geophys. Res. 97, 6037–6055.

    Google Scholar 

  • Cvitas, T. and Kley, D. (eds), 1994: The TOR Network, a Description of TOR Measurement Stations, EUROTRAC International Scientific Secretariat, Garmisch-Partenkirchen.

    Google Scholar 

  • Crutzen, P. J., 1973: A discussion of the chemistry of some minor constituents in the stratosphere and troposphere, Pure Appl. Geophys. Tellus 43AB, 136–151.

    Google Scholar 

  • Derwent, R. E., Jenkin, M. E., and Saunders, S. M., 1996: Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions, Atmos. Environ. 30(2), 181–199.

    Google Scholar 

  • Ehhalt, D. H. and Rudolph, J., 1984: On the Importance of Light Hydrocarbons in Multiphase Atmospheric Systems, Berichte der KFA JÜlich, JÜL-1942, pp. 1–43.

  • Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P., 1992: Emissions of volatile organic compounds from vegetation and implications for atmospheric chemistry, Global Biogeochem. Cycles 6(4), 389–430.

    Google Scholar 

  • Feister, U. and Warmbt, W. J., 1987: Long-term measurements of surface ozone in the German Democratic Republic, J. Atmos. Chem. 5, 1–21.

    Google Scholar 

  • Fishman, J., Solomon, S., and Crutzen, P. J., 1979: Observational and theoretical evidence in support of a significant in situphotochemical source of tropospheric ozone, Tellus 31, 432–446.

    Google Scholar 

  • Geiß, H. und Volz-Thomas, A. (Hrg.), mit Beiträgen von: Flocke, F., Geiß, H., Gilge, S., Klemp, D., Mihelcic, D., Pätz, H. W., Schultz, M., Smit, H., Su, Y., und Volz-Thomas, A., 1993: Lokale und Regionale Ozonproduktion: Chemie und Transport, Berichte des Forschungszentrums Jülich, JÜL-2764.

  • Goldstein, A. H., Wofsy, S. C., and Spivakovsky, C. M., 1995: Seasonal variations of nonmethane hydrocarbons in rural New England: constraints on OH concentrations in northern midlatitudes, J. Geophys. Res. 100, 21023–21033.

    Google Scholar 

  • Goldstein, A. H., Fan, S. M., Goulden, M. L., Munger, J. W., and Wolfsy, S. C., 1996: Emissions of ethene, propene, and 1-butene by a midlatitude forest, J. Geophys. Res. 101, 9149–9157.

    Google Scholar 

  • Gregori, M., Lanzersdorfer, Ch., Oberlinninger, H., Puxbaum, H., Biebl, P., Gläser, O., Villinger, J., 1989: Tauerntunnel Schadstoffuntersuchung 1988, Abteilung für Umweltanalytik, Institut für Analytische Chemie, Technische Universität Wien, Bericht 4/89.

  • Guenther, A. B., Hewitt, C. M., Erickson, D., Fall, R., Geron, Ch., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P., 1995: A global model of natural volatile organic compound emissions, J. Geophys. Res. 100, 8873–8892.

    Google Scholar 

  • Haagen-Smit, A. J., 1952: Chemistry and physiology of Los Angeles smog, Ind. Eng. Chem. 44, 1342–1346.

    Google Scholar 

  • Hahn, J., Gunz, D., and Matuska, P., 1991: Seasonal variations of tropospheric non-methane hydrocarbons at two mountain stations in the bavarian alpes, in P. Borell et al.(eds), Proc. EUROTRAC Symp. ’90, SPB Academic Publishing, The Hague, The Netherlands, pp. 143–147.

    Google Scholar 

  • Hahn, J., 1994: Standardisation and Intercalibration of NMHC, CH4, and CO measurements within the EUROTRAC subproject TOR, Final Report, Project: 07 EU 035.

  • Hess, G. D., Carnovale, F., Cope, M. E., and Johnson, G. M., 1992a: The evaluation of some photochemical smog mechanisms–I. Temperature and initial composition effects, Atmos. Environ. 26A, 625–641.

    Google Scholar 

  • Hess, G. D., Carnovale, F., Cope, M. E., and Johnson, G. M., 1992b: The evaluation of some photochemical smog mechanisms–II. Initial addition of alkanes and alkenes, Atmos. Environ. 26A, 643–651.

    Google Scholar 

  • Hess, G. D., Carnovale, F., Cope, M. E., and Johnson, G. M., 1992c: The evaluation of some photochemical smog mechanisms–III. Dilution and emissions effects, Atmos. Environ. 26A, 653–659.

    Google Scholar 

  • Höpfner, U., 1995: Entwicklung der Schadstoffemissionen des Verkehrs–welche Belastung besteht heute und zukünftig? IFEU-Institut für Energie-und Umweltforschung Heidelberg GmbH, paper presented at the 382nd Seminar at Forschungszentrum Gesundheits-und Umweltschutz Berlin e.V. Berlin (FGU), Nov. 1995.

  • Hov, O. and Schmidbauer, N., 1992: Atmospheric concentrations of nonmethane hydrocarbons at a north European coastal site, J. Atmos. Chem. 14, 515–526.

    Google Scholar 

  • Isaksen, I. S. A. and Hov, O., 1987: Calculations of trends in the tropospheric concentrations of O3, OH, CO, CH4 and NOx, Tellus 39b, 271–285.

    Google Scholar 

  • Jobson, B. T., Wu, Z., Niki, H., and Barrie, L. A., 1994: Seasonal trends of isoprene, C2–C5 alkanes and acetylene at a remote boreal site in Canada, J. Geophys. Res. 99, 1589–1599.

    Google Scholar 

  • Klemp, D., Flocke, F., Kramp, F., Pätz, H. W., Volz-Thomas, A., and Kley, D., 1993: Indications for biogenic sources of light olefins in the vicinity of Schauinsland/Black Forest (TOR station No. 11), in J. Slalina, G. Angeletti, and S. Beilke (eds), Air Pollution Report 47, Brussels, Belgium, pp. 271–279.

  • Kley, D., Isaksen, I. S. A., and Penkett, S. A., 1987: Subproject TOR (Tropospheric Ozone Research), EUREKA Environmental Project EUROTRAC.

  • Kley, D., Geiß, H., Klemp, D., Kramp, F., Su, Y., and Volz-Thomas, A., 1993: The importance of hydrocarbon measurements, in P. M. Borell et al.(eds), EUROTRAC Symp. ’92, SPB Academic Publishing, The Hague, The Netherlands, pp. 70–79.

    Google Scholar 

  • Kramp, F., Kley, D., and Volz-Thomas, A., 1995: Die Rolle reaktiver Kohlenwasserstoffe bei der Photooxidantienbildung in ländlichen Gebieten–ein Beitrag zur Bilanzierung der photochemischen Ozonproduktion, Berichte des Forschungszentrums Jü lich, JÜL-3050.

  • Leggett, S., 1996: Forcast distributions of species and their atmospheric reactivities for the U.K. VOC emission inventory, Atmos. Environ. 30, 215–226.

    Google Scholar 

  • Leighton, P. A., 1961: Photochemistry of Air Pollution, Academic Press, New York.

    Google Scholar 

  • Levy, H. II, 1972: Normal atmosphere: large radical and concentrations predicted, Science 173, 141–143.

    Google Scholar 

  • Liu, S. C., Trainer, M., Fehsenfeld, F. C., Parrish, D. D., Williams, E. J., Fahey, D. W., Hübler, G., and Murphy, P. C. J., 1987: Ozone production in the rural troposphere and the implications for regional and global ozone distributions, J. Geophys. Res. 92, 4191–4207.

    Google Scholar 

  • Logan, J. A., 1985: Tropospheric ozone: seasonal behaviour, trends and anthropogenic influence, J. Geophys. Res. 90, 10463–10482.

    Google Scholar 

  • Mayrsohn, H. and Crabtree, J. H., 1976: Source reconcilation of atmospheric hydrocarbons, Atmos. Environ. 10, 137–143.

    Google Scholar 

  • Müller, J. F., 1992: Geographical distribution and seasonal variation of surface emissions and deposition of atmospheric trace gases, J. Geophys. Res. 97, 3787–3804.

    Google Scholar 

  • Nelson, P. F., Quigley, S. M., and Smith, M. Y., 1983: Sources of atmospheric hydrocarbons in Sidney: a quantitative determination using a source reconcilation technique, Atmos. Environ. 17, 439–449.

    Google Scholar 

  • Parrish, D.D., Hahn, C. J., Williams, E. J., Norton, R. B., Fehsenfeld, F. C., Singh, H. B., Shetter, J. D., Gandrud, B. W., and Ridley, B. A., 1992: Indications of photochemical histories of Pacific air masses from measurements of atmospheric trace species at Point Arena, California, J. Geophys. Res. 97, 15883–15901.

    Google Scholar 

  • Penkett, S. A., Isaksen, I. S. A., and Kley, D. A., 1988: A program of tropospheric ozone research (TOR), in I. S. A. Isaksen (ed.), Tropospheric Ozone, Regional and Global Scale Interactions, NATO ASI Series C 227, D. Reidel, Dordrecht, pp. 345–363.

    Google Scholar 

  • Penkett, S. A., Blake, S. J., Lightman, P., Marsh, A. R.W., Anwyl, P., Butcher, B., 1993: The seasonal variation of nonmethane hydrocarbons in the free troposphere over the North Atlantic Ocean: possible evidence for extensive reaction of hydrocarbons with the nitrate radical, J. Geophys. Res. 98, 2865–2885.

    Google Scholar 

  • Platt, U., Rateike, M., Junkermann, W., Rudolph, J., and Ehhalt, D. H., 1988: New tropospheric OH measurements, J. Geophys. Res. 93, 5159–5166.

    Google Scholar 

  • PORG, 1993: Ozone in the United Kingdom, Third Report of U.K. Photochemical Oxidants Review Group, Harwell Laboratory, Oxfordshire.

    Google Scholar 

  • Potter, C. J., Bailey, J. C., Savage, C. A., Schmidl, B., Simmonds, A. C., and Williams, M. L., 1988: TheMeasurement of Gaseous and Particulate Emissions from Light-Duty and Heavy-Duty Motor Vehicles under Road Driving Conditions, Dept. of Trade and Industry, SAE Special Publication, Warren Spring Laboratory, U.K., SAE-SP-746.

    Google Scholar 

  • Rudolph, J., Ehhalt, D. H., Khedim, A., and Jebsen, C., 1981: Determination of C2–C5 hydrocarbons at low parts per 109 to high parts per 1012 levels, J. Chromatogr. 217, 301–310.

    Google Scholar 

  • Rudolph, J., Johnen, F. J., and Khedim, A., 1986: Problems connected with the analysis of halocarbons and hydrocarbons in the nonurban atmosphere, Inter. J. Environ. Anal. Chem. 27, 97–122.

    Google Scholar 

  • Rudolph, J., Johnen, F. J., Khedim, A., and Pilwat, G., 1990: The use of automated ‘on line’ gaschromatography for the monitoring of organic trace gases in the atmosphere at low levels, Intern. J. Environ. Anal. Chem. 38, 143–155.

    Google Scholar 

  • Rudolph, J. and Johnen, F. J., 1990: Measurements of light atmospheric hydrocarbons over the Atlantic in regions of low biological activity, J. Geophys. Res. 95, 20583–20591.

    Google Scholar 

  • Rudolph, J., 1995: The tropospheric distribution and budget of ethane, J. Geophys. Res. 100, 11369–11381.

    Google Scholar 

  • Seinfeld, J. H. et al., 1992: National Research Council: Rethinking the Ozone Problem in Urban and Regional Air Pollution, Table 11-1, National Academy Press, Washington DC, ISBN 0-309-04631-9.

    Google Scholar 

  • Slemr, F. and Seiler, W., 1984: Field measurements of NO and NO2 emissions from fertilized and unfertilized soils, J. Atmos. Chem. 2, 1–24.

    Google Scholar 

  • Stähelin, J., Thudium, J., Buehler, R., Volz-Thomas, A., and Graber, W., 1994: Trends in surface ozone concentrations at Arosa (Switzerland), Atmos. Environ. 28, 75–87.

    Google Scholar 

  • Stähelin, J. and Schläpfer, K., 1994: Schußbericht des Forschungsprojektes: Erfassung von Emissionen der Kraftfahrzeugverkehrs mittels Messungen im Gubristtunnel (Projekt im EUROTRACSubprojekt GENEMIS, Zürich und Basel, figure 21.

  • Sternberg, J. C., Gallaway, W. S., and Jones, D. T. L., 1962: The mechanism of response of flame ionization detectors, International Symposium of Gas Chromatography 1961, Academic Press, New York, pp. 231–267.

    Google Scholar 

  • Tille, K. J. W., Savelsberg, M., and Bächmann, K., 1985: Airborne measurements of nonmethane hydrocarbons over Western Europe: vertical distributions, seasonal cycles of mixing ratios and source strengths, (1985), Atmos. Environ. 19, 1751–1760.

    Google Scholar 

  • Tingey, D.T., Turner, D. P., and Webere, J.A., 1991: Factors controlling the emissions of monoterpenes and other volatile organic compounds, in D. T. Sharkey et al.(eds), Trace Gas Emissions by Plants, Academic, San Diego, California, pp. 93–119.

    Google Scholar 

  • Trainer, M., Buhr, M. P., Curran, C.M., Fehsenfeld, F. C., Hsie, E.Y., Liu, S.C., Norton, R. B., Parrish, D. D., Williams, E. J., 1991: Observations and modelling of the reactive nitrogen photochemistry at a rural site, J. Geophys. Res. 96(D2), 3045–3063.

    Google Scholar 

  • Umweltbundesamt, 1994a: Daten zur Umwelt 1992/93, Umweltbundesamt, Erich Schmidt Verlag, Berlin, pp. 236–237.

    Google Scholar 

  • Umweltbundesamt-Berichte 8/94, 1994b: Abgas-Emissionsfaktoren von PKW in der Bundesrepublik Deutschland, Technischer Überwachungsverein Rheinland GmbH, Erich Schmitt Verlag, Berlin, table 11.6–11.13.

    Google Scholar 

  • Volz, A. and Kley, D., 1988: Evaluation of the Montsouris series of ozone measurements made in the nineteenth century, Nature 332, 240–242.

    Google Scholar 

  • Volz-Thomas, A., Kley, D., Pätz, H. W., Pilwat, G., Mihelcic, D., Flocke, F., Smit, H. G. J., 1990: Photo-Oxidants and Precursors at Schauinsland, Black Forest, in EUROTRAC Annual Report 1089, Part 9, International Scientific Secretariat Fraunhofer Institute (IFU), Garmisch-Partenkirchen.

    Google Scholar 

  • Williams, E. J., Hutchinson, L., Fehsenfeld, F. C., 1992: NOx and N2O emissions from soil, Global Biogeochemical Cycles 6, 351–388.

    Google Scholar 

  • Whitby, R. A. and Altwicker, E. R., 1978: Acetylene in the atmosphere: sources, representative ambient concentrations and ratios to other hydrocarbons, Atmos. Environ. 12, 1289–1296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klemp, D., Kley, D., Kramp, F. et al. Long-Term Measurements of Light Hydrocarbons (C2–C5) at Schauinsland (Black Forest). Journal of Atmospheric Chemistry 28, 135–171 (1997). https://doi.org/10.1023/A:1005878018619

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005878018619

Navigation