Skip to main content
Log in

Remote sensing-modelisation approach for diurnal estimation of burnt biomass in the Central African Republic Savanna

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Experimental studies and mesoscale modeling of atmospheric chemistry require a good knowledge of the sources of the atmospheric constituent, at a temporal scale of about one hour and at a spatial scale corresponding to the model grid. A combined remote sensing/modeling approach for the estimation of the diurnal distribution of the amount of biomass burning in Central African Republic (C.A.R.) savanna fires is proposed. The fire propagation model (BEHAVE) developed by Rothermel was adapted to the fuel characteristics encountered in C.A.R. Ground and airborne measurements with satellite images (NOAA/AVHRR) were used to predict an accurate estimate of the burnt biomass. This combination allows the calculation of the distribution of the number of fires during the day providing an evaluation of the instantaneous fluxes of the compounds emitted in the atmosphere by these fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andreae, M. O., 1991: Its history, use, and distribution and its impact on environmental quality and global climate, in: J. S., Levine (ed.), Global Biomass Burning: Atmospheric, Climate and Biospheric Implications, MIT Press, Cambridge, pp. 3–21.

    Google Scholar 

  • Andrews, P. L., 1986: BEHAVE: Fire behavior prediction and fuel modeling system-Burn subsystem, Part 1, USDA, Forest Service, General Technical Report INT-194.

  • Andrews, P. L. and Chase, C. H., 1989: BEHAVE: Fire behavior prediction and fuel modeling system-Burn subsystem, Part 2, USDA, Forest Service, General Technical Report INT-260.

  • Albini, F. A., 1976: Estimating wildfire behavior and effects, USDA Forest Service, Gen. Tech. Rep. INT-30.

  • Blasco, F. and Achard, F., 1990: Analysis of vegetation changes using satellite data, in: Bouwman (ed.), Soils and Greenhouse Effect, Wiley New York, pp. 61–127.

    Google Scholar 

  • Bonsang, B., Boissard, C., Le, Cloarec, M. F., Rudolph, J., and Lacaux, J. P., 1995: Methane, carbon monoxide and light non-methane hydrocarbon emissions from African savanna burnings during the FOS/DECAFE Experiment, J. Atmos. Chem. 22, 149–162.

    Google Scholar 

  • Brustet, J. M., Vickos, J-B., Fontan, J., Podaire, A., and Lavenu, F., 1991: Characterization of active fires in West African savannas by analysis of satellite data (Landsat Thematic Mapper), in J. S., Levine (ed.), Global Biomass Burning, MIT Press, Cambridge.

    Google Scholar 

  • Burgan, R. E. and Rothermel, R. C., 1984: BEHAVE: Fire behavior prediction and fuel modeling system. Fuel subsystem, USDA Forest Service, General Technical Report INT-167.

  • Delmas, R., Lacaux, J-P., Menaut, J-C., Abbadie, L., Le, Roux, X., Helas, G., and Lobert, J., 1995a: Nitrogen compound emission from biomass burning in tropical African savanna, FOS/DECAFE 91 Experiment (Lamto, Ivory Coast), J. Atmos. Chem. 22, 175–193.

    Google Scholar 

  • Delmas, R., Lacaux, J-P., Cros, B., Zimmerman, P., Brasseur, G., Malingreau, J-P., Gregoire, J-M., Andreae, M. O., and Meixner, F., 1995b: Overview of the EXPRESSO project, in: J. S., Levine (ed.), Global Biomass Burning, MIT Press, Cambridge, in press.

    Google Scholar 

  • Dozier, J., 1981. A method for satellite identification of surface temperature fields of subpixel resolution, Remote Sensing Environ. 11, 221–229.

    Google Scholar 

  • Everson, T. M., van, Wilgen, B. W., and Everson, C. S., 1988: Adaptation of a model for rating fire danger in the Natal Drakensberg, S. Afr. J. Sci. 84, 44–49.

    Google Scholar 

  • Flanningan, M. D. and Vonder, Haar, T. H., 1986: Forest fire monitoring using NOAA satellite AVHRR, Canad. J. Forest Res. 16, 975–982.

    Google Scholar 

  • Franca, J. R., 1994: Télédétection satellitaire des feux de végétation en Afrique intertropicale- Application à l'estimation des flux des composés en trace émis dans l'atmosphère, Thèse Université Paul Sabatier, 215 p., Laboratoire d'Aérologie, Toulouse, France.

  • Frandsen, W. H., 1971. Fire spread through porous fuels from the conservation of energy, Combustion and Flame 16, 9–16.

    Google Scholar 

  • Grégoire, J. M., Flasse, S., et Malingreau, J-P., 1988: Evaluation de l'action des feux de brousse de novembre 1987 à février 1988 dans la région frontalière Guinée-Sierra Leone, Exploitation des images NOAA-AVHRR, Rapport CCR S.P.I. 88.39, Octobre.

  • Hao, W. M., Liu, M. H., and Crutzen, P. J., 1990: Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on FAO statistics for the period 1975–1980, in J. G., Goldammer (ed.), Fire in Tropical Biota, Springer-Verlag, New York, pp. 440–462.

    Google Scholar 

  • Hao, W. M. and Liu, M. H., 1994: Spatial and temporal distribution of tropical biomass burning, Global Biogeochem. Cycles 8(4), 495–503.

    Google Scholar 

  • Kaufman, Y. J., Tucker, C. J., and Fung, I., 1990: Remote sensing of biomass burning in tropics, J. Geophys. Res. 95, 9927–9939.

    Google Scholar 

  • Kennedy, P. J., Belward, A. S., and Grégoire, J. M., 1994: An improved approach to fire monitoring in West Africa using AVHRR data, Int. J. Remote Sensing 15(11), 2235–2255.

    Google Scholar 

  • Malingreau, J. P., Stephens, G., and Fellows, L., 1985: Remote sensing of forest fires: Kalimantan and North Borneo in 1982–1983, Ambio 4(6), 314–321.

    Google Scholar 

  • Malingreau, J. P., and Tucker, C. J., 1987: The contribution of AVHRR data for measuring and understanding global processes: Large-scale Deforestation in the Amazon Basin, International Geoscience And Remote Sensing Symposium, IGARSS, Proceedings ANN ARBOR, Michigan, May, 18–21, pp. 443–448.

  • Matson, M., Schneider, Sr., Aldrige, Sr., and Satwell, B., 1984: Fire detection using the National Oceanic and Atmospheric Administration Series Satellites, National Environment Satellite, data and information service, Washington, DC.

    Google Scholar 

  • Matson, M. and Stephens, G., 1985: Fire detection using NOAA polar-orbiting satellite data: Proceedings of the 10th William T. Pecora Memorial Symposium, Remote Sensing in Forest and Range Resource Management, Fort Collins, Colorado, August 20–22, pp. 445–446.

  • Matson, M., and Stephens, G., 1986: Regional and global fire detection using NOAA satellite data, Proceedings of 1st Australian AVHRR conference, Perth, Australia, October 22–24, pp. 201–209, CSIRO, Division of groundwater research, Perth, Australia 6014.

    Google Scholar 

  • Matson, M. Stephens, G., and Robinson, J., 1987: Fire detection using data from NOAA-N satellite, Int. J. Remote Sensing 7, 961–970.

    Google Scholar 

  • Menaut, J. C. and Cesar, J., 1979: Structure and primary productivity of Lamto savannas, Ivory Coast, Ecology 60, 1197–1210.

    Google Scholar 

  • Menaut, J. C., Lavenu, F., Loudjani, P., and Podaire, A., 1991: Biomass burning in West African savannas, in J. S. Levine (ed.), Global Biomass Burning, MIT-Press, pp. 133–143.

  • Pereira, M. C. and Setzer, A. W., 1993: Spectral characteristics of deforestation fires in NOAA-AVHRR images, Int. J. Remote Sensing 14(3), 583–597.

    Google Scholar 

  • Rothermel, R. C., 1972: A mathematical model for predicting fire spread in wildland fuels, USDA Forest Service, Research Paper INT-115.

  • Rothermel, R. C., 1983. How to predict the spread and intensity of forest and range fires, Intermountain forest and range experiment station, Ogden Utah, USDA Forest Service, Gen. Tech. Rep. INT-143.

    Google Scholar 

  • Schroeder, M. J., 1969: Ignition Probability, Fort Collins, CO: USDA Forest Service, Rocky Mountain Forest and Range Experiment Station. Unpublished report.

    Google Scholar 

  • Seiler, W. and Crutzen, P. J., 1980: Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning, Climate Change 2, 207–247.

    Google Scholar 

  • Setzer, A. W. and Malingreau, J. P., 1993: Temporal variation in the detection limit of fires in AVHRR's CH3, 6 TH AVHRR data, User's Meeting, Proceedings EUMP-12, Belgirate, Italy, 29th June–2th July, pp. 575–579.

  • Sneeuwjagt, R. J. and Frandsen, W. H., 1977: Behaviour of experimental grass fires vs. predictions based on Rothermel's fire model. Can. J. Forest Res. 7, 357–367.

    Google Scholar 

  • Van, Wilgen, B. W., Le, Maitre, D. C., and Kruger, F. J., 1985: Fire behaviour in South African fynbos (macchia) vegetation and predictions from Rothermel's fire model, J. Appl. Ecol. 22, 207–216.

    Google Scholar 

  • Vickos, J. B., 1991: Télédétection des feux de végétation en Afrique intertropicale et estimation des émissions de constituants ayant un intérêt atmosphérique, Thèse Université Paul Sabatier, Laboratoire d' Aérologie, Toulouse, France.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moula, M., Brustet, J.M. & Fontan, J. Remote sensing-modelisation approach for diurnal estimation of burnt biomass in the Central African Republic Savanna. J Atmos Chem 25, 1–19 (1996). https://doi.org/10.1007/BF00053283

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00053283

Key words

Navigation