Skip to main content
Log in

Behavior of atmospheric formic and acetic acid in the presence of hydrometeors

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The partitioning of formic and acetic acid between the atmospheric liquid and gaseous phase is modelled for a range of liquid water contents. At low liquid water content, formic acid is dissolved preferentially over acetic acid. Applying these results to the analysis of processes taking place in clouds, one can explain the frequently found enrichment of formic over acetic acid in rainwater, which results from selective transport by washout. We assess the ability of dew to act as a temporary sink and source for organic acids, and propose that the diel variation of mixing ratios often found during surface measurements, may in part be due to the dissolution in dew and subsequent evaporation on the following day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae M. O., Talbot R. W., and Li S. M., 1987, Atmospheric measurements of pyruvic and formic acid, J. Geophys. Res. 92, 6635–6641.

    Google Scholar 

  • Andreae M. O., Talbot R. W., Andreae T. W., and Harriss R. C., 1988, Formic and acetic acid over the central Amazon region, Brazil. 1. Dry season, J. Geophys. Res. 93, 1616–1624.

    Google Scholar 

  • Andreae M. O., Talbot R. W., Berresheim H., and Beecher K. M., 1990, Precipitation chemistry in central Amazonia, J. Geophys. Res. 95, 16987–16999.

    Google Scholar 

  • Brimblecombe P., 1978, ‘Dew’ as a sink for sulphur dioxide, Tellus 30, 151–157.

    Google Scholar 

  • Chameides W. L., 1987, Acid dew and the role of chemistry in the dry deposition of reactive gases to wetted surfaces, J. Geophys. Res. 92, 11895–11908.

    Google Scholar 

  • Chang T. Y., Kuntasal G., and Pierson W. R., 1987, Night-time N2O5/NO3 chemistry and nitrate in dew water, Atmos. Environ. 21, 1345–1351.

    Google Scholar 

  • Elbert W. and Andreae M. O., 1989, Deposition of organic anions at a semi-rural site in central Europe, in H.-W. Georgii (ed.), Mechanism and Effect of Pollutant Transfer into Forests, Kluwer, Dordrecht, Holland, pp. 111–118.

    Google Scholar 

  • Farmer J. C. and Dawson G. A., 1982, Condensation sampling of soluble atmospheric trace gases, J. Geophys. Res. 87, 8931–8942.

    Google Scholar 

  • Fischer, M., 1989, Beiträge zum Verhalten des Systems Brenztraubensäure — Wasser, UV-Absorption und Bestimmung der Henry-Konstanten, Diploma thesis, Mainz.

  • Guiang S. F.III, Krupa S. V., and Pratt G., 1984, Measurements of S(IV) and organic anions in Minnesota rain, Atmos. Environ. 18, 1677–1682.

    Google Scholar 

  • Hartmann W. R., Andreae M. O., and Helas G., 1989, Measurements of organic acids over central Germany, Atmos. Environ. 23, 1531–1533.

    Google Scholar 

  • Hartmann W. R., Santana M., Hermoso M., Andreae M. O., and Sanhueza E., 1991, Diurnal cycles of formic and acetic acids in the northern part of the Guayana shield, Venezuela, J. Atmos. Chem. 13, 63–72.

    Google Scholar 

  • Jacob D. J. and Wofsy S. C., 1988, Photochemistry of biogenic emissions over the Amazon forest, J. Geophys. Res. 93, 1477–1486.

    Google Scholar 

  • Kawamura K., Ng L. L., and Kaplan I. R., 1985, Determination of organic acids in the atmosphere motor exhausts, and engine oils, Environ. Sci. Technol. 19, 1082–1086.

    Google Scholar 

  • Keene W. C. and Galloway J. N., 1986, Considerations regarding sources for formic and acetic acids in the troposphere, J. Geophys. Res. 91, 14466–14474.

    Google Scholar 

  • Keene W. C. and Galloway J. N., 1988, The biogeochemical cycling of formic and acetic acids through the troposphere: an overview of current understanding, Tellus 40B, 322–334.

    Google Scholar 

  • Keene W. C., Galloway J. N., and HoldenJr. J. D., 1983, Measurement of weak organic acidity in precipitation from remote areas of the world, J. Geophys. Res. 88, 5122–5130.

    Google Scholar 

  • Likens G. E. and Galloway J. N., 1983, The composition and deposition of organic carbon in precipitation, Tellus 35B, 16–24.

    Google Scholar 

  • Mason B. J., 1971, The Physics of Clouds, 2nd edn., Oxford University Press (Clarendon), London.

    Google Scholar 

  • Mulawa P. A., Cadle S. H., Lipari F., Ang C. C., and Vandervennet R. T., 1986, Urban dew: Its composition and influence on dry deposition rates, Atmos. Environ. 20, 1389–1396.

    Google Scholar 

  • Norton R. B., Roberts J. M., and Huebert B. J., 1983, Tropospheric oxalate, Geophys. Res. Lett. 10, 517–520.

    Google Scholar 

  • Pandis S. N. and Seinfeld J. H., 1991, Should bulk cloudwater or fogwater samples obey Henry's law? J. Geophys. Res. 96, 10791–10798.

    Google Scholar 

  • Perdue E. M. and Beck K. C., 1988, Chemical consequences of mixing atmospheric droplets of varied pH, J. Geophys. Res. 93, 691–698.

    Google Scholar 

  • Pierson W. R., Brachaczek W. W., Gorse R. A.Jr., Japar S., and Norbeck J. M., 1986, On the acidity of dew, J. Geophys. Res. 91, 4083–4096.

    Google Scholar 

  • Pierson W. R., Brachaczek W. W., Japar S. M., Cass G. R., and Solomon P. A., 1988, Dry deposition and dew chemistry in Claremont, California, during the 1985 nitrogen species methods comparison study, Atmos. Environ. 22, 1657–1663.

    Google Scholar 

  • Pruppacher H. R. and Klett J. D., 1980, Microphysics of Clouds and Precipitation, D. Reidel, Dordrecht.

    Google Scholar 

  • Quitmann E. and Cauer H., 1939, Verfahren zur chemischen Analyse der Nebelkerne der Luft, Z. Anal. Chem. 116, 81–91.

    Google Scholar 

  • Robinson R. A. and Stokes R. H., 1970, Electrolyte Solutions, Butterworths, London.

    Google Scholar 

  • Schäfer, L., Kesselmeier, J., and Helas, G., Formic and acetic acids emission from conifers measured with a ‘cuvette’ technique, in G. Angeletti et al. (eds.), Air Pollution Research Report 39, Field Measurements and Interpretation of Species Related to Photooxidants and Acid Deposition, Guyot SA, Brussels, p. 319–323.

  • Schwartz S. E., 1984, Gas-aqueous reactions of sulfur and nitrogen oxides in liquid water clouds, in J. G. Calvert (ed.), SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations, Butterworth, London.

    Google Scholar 

  • Talbot R. W., Beecher K. M., Harriss R. C., and CoferIII W. R., 1988 Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site, J. Geophys. Res. 93, 1638–1652.

    Google Scholar 

  • Talbot R. W., Andreae M. O., Berresheim H., Jacob D. J., and Beecher K. M., 1989, Sources and sinks of formic, acetic, and pyruvic acids over central Amazonia: 2. Wet season, J. Geophys. Res. 95, 17799–17811.

    Google Scholar 

  • U.S. Standard Atmosphere, 1976, National Oceanic and Atmospheric Administration, Washington, D.C.

  • Warneck P., 1986, The equilibrium distribution of atmospheric gases between the two phases of liquid water clouds, in W. Jaeschke (ed.), Chemistry of Multiphase Atmospheric Systems, Springer, Berlin.

    Google Scholar 

  • Warneck P., 1988, The Chemistry of the Natural Atmosphere, Academic Press, San Diego, pp. 390–393.

    Google Scholar 

  • Winiwarter W., Puxbaum H., Fuzzi S., Facchini M. C., Orsi G., Beltz N., Enderle K., and Jaeschke W., 1988, Organic acid gas and liquid-phase measurements in Po Valley — winter conditions in the presence of fog, Tellus 40B, 348–357.

    Google Scholar 

  • Winkler P., 1988, The growth of atmospheric aerosol particles with relative humidity, Physica Scripta 37, 223–230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helas, G., Andreae, M.O. & Hartmann, W.R. Behavior of atmospheric formic and acetic acid in the presence of hydrometeors. J Atmos Chem 15, 101–115 (1992). https://doi.org/10.1007/BF00053753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00053753

Key words

Navigation