Skip to main content
Log in

Kinetics of the reaction of nitrogen dioxide with ozone

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of the reaction of NO2 with O3 have been investigated at 296 K, using UV absorption spectroscopy to monitor decay of NO2 or O3 and infrared laser absorption spectroscopy to monitor formation of the reaction product N2O5. The results both for the rate coefficient at 296 K (k 1=3.5×10-17 cm3 molecule-1 s-1) and the reaction stoichiometry (ΔNO2/ΔO3=1.85±0.09) are in good agreement with previous studies, confirming that the two step mechanism involving formation of symmetrical NO3 as an intermediate is predominant.

% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOtaiaab+% eadaWgaaWcbaGaaeOmaaqabaGccqGHRaWkcaqGpbWaaSbaaSqaaiaa% bodaaeqaaOWaa4ajaSqaaaqabOGaayPKHaGaaeOtaiaab+eadaWgaa% WcbaGaae4maaqabaGccqGHRaWkcaqGpbWaaSbaaSqaaiaabkdaaeqa% aaaa!41D7!\[{\text{NO}}_{\text{2}} + {\text{O}}_{\text{3}} \xrightarrow{{}}{\text{NO}}_{\text{3}} + {\text{O}}_{\text{2}} \]

% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOtaiaab+% eadaWgaaWcbaGaae4maaqabaGccqGHRaWkcaqGobGaae4tamaaBaaa% leaacaqGYaaabeaakiabgUcaRiaab2eadaGdKaWcbaaabeGccaGLsg% cacaqGobWaaSbaaSqaaiaabkdaaeqaaOGaae4tamaaBaaaleaacaqG% 1aaabeaakiabgUcaRiaab2eaaaa!4464!\[{\text{NO}}_{\text{3}} + {\text{NO}}_{\text{2}} + {\text{M}}\xrightarrow{{}}{\text{N}}_{\text{2}} {\text{O}}_{\text{5}} + {\text{M}}\]

A possible minor role for the unsymmetrical ONOO species is suggested to account for the lower-than-expected stoichiometry factor. The importance of this reaction in the oxidation of atmospheric NO2 is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Audley, G. J., Baulch, D. L., Campbell, I. M., and Hamill, L. T., 1980, Evidence for a new intermediate in N2O5 decomposition, J.C.S. Chem. Comm. 433–434.

  • Baulch, D. L., Cox, R. A., Hampson, R. F. Jr., Kerr, J. A., Troe, J., and Watson, R. T., 1980, Evaluated kinetic and photochemical data for atmospheric chemistry, J. Phys. Chem. Ref. Data 9, 295–471.

    Google Scholar 

  • Becker, K. H., Schurath, V., and Seitz, H., 1974, Ozone-olefin reactions in the gas phase, I. rate constants and activation energies, Int. J. Chem. Kinet. 6, 725–739.

    Google Scholar 

  • Bhatia, S. C. and Hall, J. H. Jr., 1980, A matrix isolation infrared spectroscopic study of the reactions of nitric oxide with oxygen and ozone, J. Phys. Chem. 84, 3255.

    Google Scholar 

  • Chamberlain, A. C., Eggleton, A. E. J., Megaw, W. J., and Morris, J. B., 1960, Behaviour of iodine vapour in air, Disc. Farad. Soc. No. 30, 162.

    Google Scholar 

  • Cox, R. A., 1974, Particle formation from homogeneous reactions of sulphur dioxide and nitrogen dioxide, Tellus 26, 235–240.

    Google Scholar 

  • Connell, P. and Johnston, H. S., 1979, Thermal dissociation of N2O5 in N2, Geophys. Res. Lett. 6, 553–556.

    Google Scholar 

  • Davidson, J. A., Viggiano, A. A., Howard, C. J., Dotan, I., Fehsenfeld, F. C., Albritton, D. L., and Ferguson, E. E., 1978, Rate constants for the reactions of O2 +, NO2 +, NO+, H3O+, CO3 -, NO2 - and halide ions with N2O5 at 300 K, J. Chem. Phys. 68, 2085–2087.

    Google Scholar 

  • Davis, D. D., Prusazcyk, J., Dwyer, M., and Kim, P., 1974, A stopped flow-time of flight mass spectrometry kinetics study; Reaction of ozone with nitrogen dioxide and sulphur dioxide, J. Phys. Chem. 78, 1775–1779.

    Google Scholar 

  • Fuchs, N. A. and Sutugin, A. G., 1971, High-dispersed aerosols, in Int. Reviews of Aerosol Physics and Chemistry, vol. 2 (eds. G. M. Hidy, and J. R. Brock), Pergamon, New York, pp. 1–60.

    Google Scholar 

  • Graham, R. A. and Johnston, H. S., 1974, Kinetics of the gas phase reaction between ozone and nitrogen dioxide, J. Chem. Phys. 60, 4628–4629.

    Google Scholar 

  • Huie, R. E. and Herron, J. T., 1974, The rate constant for the reaction O3+NO2=O2+NO3 over the temperature range 259–362 K, Chem. Phys. Lett. 27, 411–414.

    Google Scholar 

  • Morris, E. D. and Niki, H. J., 1973, The reaction of dinitrogen pentoxide with water, J. Phys. Chem. 77, 1929–1932.

    Google Scholar 

  • Noxon, J. F., Norton, R. B. and Marovich, E., 1980, NO3 in the troposphere, Geophys. Res. Lett. 7, 125–128.

    Google Scholar 

  • Ogg, R. A. Jr., Richardson, W. S., and Wilson, M. K., 1950, Experimental evidence for the quasiunimolecular dissociation of nitrogen pentoxide, J. Chem. Phys. 18, 573.

    Google Scholar 

  • Platt, U., Perner, D., Schroder, J., Kessler, C., and Toenissen, A., 1981, The diurnal variation of NO3, J. Geophys. Res. 86, C12, 11965–11970.

    Google Scholar 

  • Pruppacher, H. R. and Klett, J. D., 1978, Microphysics of Clouds and Precipitation, D. Reidel, Dordrecht.

    Google Scholar 

  • Wu, C. H., Morris, E. D. Jr., and Niki, H., 1973, The reaction of nitrogen dioxide with ozone, J. Phys. Chem. 77, 2507–2511.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, R.A., Coker, G.B. Kinetics of the reaction of nitrogen dioxide with ozone. J Atmos Chem 1, 53–63 (1983). https://doi.org/10.1007/BF00113979

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00113979

Key words

Navigation