Skip to main content
Log in

Possibilities to measure the parity-violating energy difference

  • Section 8. Origin And Structure Of The Cell: Physical Aspects
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Four methods: direct, polymerization, condensation and crystallization, are dicussed. that may be applied to measure the parity violating energy difference between enantiomers We find that the best possibility is the crystallization with element of high Z in the asymmetry center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamagata, Y.: A hypothesis for the asymmetric appearance of biomolecules on Earth,J. Theor. Biol. 11 (1966)495–498.

    Google Scholar 

  2. Keszthelyi, L. Origin of asymmetry of biomolecules and weak interaction,Origins of Life 8 (1977)299–340.

    Google Scholar 

  3. Bonner, W. A. The origin and amplification of biomolecular chirality,Origins of Life and Evolution of the Biosphere 21 (1991)59–111.

    Google Scholar 

  4. Rein, D. W. Some remarks on parity violating effects of intramolecular interactions.J. Mol. Evol. 4 (1974)15–22.

    Google Scholar 

  5. Rein, D. W., Hegstrom, R. A. and Sandars, P. G. Parity violating energy difference between mirror image molecules.Phys. Lett. 71A (1979)499

    Google Scholar 

  6. Tranter, G. E. Parity violating ehergy differences of chiral minerals and the origin of biomolecular homochirality.Nature, 318 (1985)172–173.

    Google Scholar 

  7. MacDermott, A. J. The weak force and the origin of life, in Ponnamperuma, C. and Chela-Flores, J. (eds)Chemical Evolution: Origin of Life, A. Deepak Publishing, Hampton, Virginia, USA, 1993, pp. 85–117.

    Google Scholar 

  8. Quack, M. On the measurement of the parity violating energy difference between enantiomers.Chem. Phys. Letters, 132 (1986)147–153.

    Google Scholar 

  9. Vértes, A. and Nagy, D. L.Mössbauer spectroscopy of frozen solutions. Akadémiai Kiadó, Budapest, 1990.

    Google Scholar 

  10. Salam, A. The role of chirality in the origin of life.J. Mol. Evol., 33 (1991)105–113.

    Google Scholar 

  11. Figureau, A., Duval, E. and Boukenter, A. Search for phase transitions changing molecular chirality. in Ponnamperuma, C. and Chela-Flores, J. (eds)Chemical Evolution: Origin of Life, A. Deepak Publishing, Hampton, Virginia, USA, 1993, pp. 157–164.

    Google Scholar 

  12. Navarro-Gonzales, R., Khanna, R. K. and Ponnamperuma, C. Chirality and the origins of life. in Ponnamperuma, C. and Chela-Flores, J. (eds)Chemical Evolution: Origin of Life, A. Deepak Publishing, Hampton, Virginia, USA, 1993, pp. 135–155.

    Google Scholar 

  13. Keszthelyi, L. Contribution of parity violating effects to intramolecular interactions.Physics Letters, 64A (1977)287–288.

    Google Scholar 

  14. Pincock, R. E., Perkins, R. R., Ma, A. S. and Wilson, K. R. Probability distribution of enantomorphous forms in spontaneous generation of optically active substances.Science, 174 (1971)1018–1020.

    Google Scholar 

  15. Kovács, K. L. On the physical origin of biological handedness.Origins of Life, 9 (1979)219–233.

    Google Scholar 

  16. Kondepudi, D. K., Bullock, R. L., Digits, J. A., Hall, J. K. and Miller, J. M. Kinetics of chiral symmetry breaking in crystallization.J. Am. Chem. Soc. 113 (1993)10211–10216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keszthelyi, L. Possibilities to measure the parity-violating energy difference. J Biol Phys 20, 241–245 (1995). https://doi.org/10.1007/BF00700442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00700442

Keywords

Navigation