Skip to main content
Log in

Predictive modelling of the properties and toughness of polymeric materials Part I Why is polystyrene brittle and polycarbonate tough?

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The brittleness of polystyrene (PS) and the toughness but notch sensitivity of polycarbonate (PC) have been studied by the detailed finite element analyses of the stress and strain fields in a notched tensile bar with a minor defect. The defect represented a flaw or imperfection, generated during the test specimen production. The large-strain mechanical responses of both materials were approximated by an accurate elasto-viscoplastic constitutive model with appropriate material parameters. It was assumed that failure occurs instantaneously once the dilative stress exceeds a certain critical craze-initiation stress. The analyses show that the unstable post-yield mechanical response of both materials results in localisation of stresses and strains near the defect at a very low macroscopic strain (0.16%). As a result, a strong dilative stress concentration is formed just below the surface of the defect. For the polystyrene specimen, the critical stress is reached at the defect. For the polycarbonate, however, the effect of the stress concentrating defect was counteracted by a higher craze-initiation stress and stronger strain hardening. The PC craze-initiation resistance, however, did not suffice to overcome the dilative stress concentration raised by the notch tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. J. Kramer, in “Adv. in Polymer Sci., Vol. 52/53,” edited by H. H. Kausch (Springer-Verlag, Berlin, 1983) Ch. 1.

    Google Scholar 

  2. C. S. Henkee and E. J. Kramer, J. Polym. Sci. Polym. Phys. Ed. 22 (1984) 721.

    Google Scholar 

  3. E. J. Kramer and L. L. Berger, in “Adv. in Polymer Sci., Vol. 91/92,” edited by H. H. Kausch (Springer-Verlag, Berlin, 1990) Ch. 1.

    Google Scholar 

  4. R. A. W. Fraser and I. M. Ward, J. Mater. Sci. 12 (1977) 459.

    Google Scholar 

  5. M. C. M. Van der sanden, J. M. M. Kok and MEIJER, Polymer 35 (1994) 2995.

    Google Scholar 

  6. M. C. M. Van der sanden, L. G. C. Buijs, F. O. De bie and H. E. H. Meijer, ibid. 35 (1994) 2783.

    Google Scholar 

  7. M. C. M. Van der sanden, H. E. H. Meijer and P. J. Lemstra, ibid. 34 (1993) 2148.

    Google Scholar 

  8. B. J. P. Jansen, H. E. H. Meijer and P. J. Lemstra, Polymer, submitted.

  9. A. M. L. MagalhÃes and R. J. M. Borggreve, Macromolecules 28 (1995) 5841.

    Google Scholar 

  10. D. H. Ender and R. D. Andrews, Polymer Letters 36 (1965) 3057.

    Google Scholar 

  11. T. A. Tervoort, PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1996.

  12. B. J. P. Jansen, PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1998.

  13. R. J. M. Smit, W. A. M. Brekelmans and H. E. H. Meijer, Comput. Methods Appl. Mech. Engrg. 155 (1998) 181.

    Google Scholar 

  14. W. A. M. Brekelmans Idem., J. Mech. Phys. Solids 47 (1999) 201.

    Google Scholar 

  15. W. A. M. BrekelmanS Idem., J. Mater. Sci. 35 (2000) 2869.

    Google Scholar 

  16. W. A. M. Brekelmans Idem., ibid. 35 (2000) 2881.

    Google Scholar 

  17. O. A. Hasan, M. C. Boyce, X. S. Li and S. Berko, J. Polymer Sci.: Part B: Polymer Phys. 31 (1993) 185.

    Google Scholar 

  18. P. H. M. Timmermans, PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 1997.

  19. T. A. Tervoort, R. J. M. Smit, W. A. M. Brekelmans and L. E. Govaert, Mech. of Time Dep. Mat. 1 (1997) 269.

    Google Scholar 

  20. M. C. Boyce, D. M. Parks and A. S. Argon, Mechanics of Materials 7 (1988) 15.

    Google Scholar 

  21. D. M. Parks and A. S. Argon Idem., Int. J. Plasticity 5 (1989) 593.

    Google Scholar 

  22. E. M. Arruda and M. C. Boyce, ibid. 9 (1993) 697.

    Google Scholar 

  23. P. D. Wu and E. Van der giessen, ibid. 35 (1993) 935.

    Google Scholar 

  24. T. A. Tervoort, E. T. J. Klompen and L. E. Govaert, J. Rheol. 40 (1996) 779.

    Google Scholar 

  25. A. I. Leonov, Rheol. Acta 15 (1976) 85.

    Google Scholar 

  26. F. P. T. Baaijens, ibid. 30 (1991) 284.

    Google Scholar 

  27. Marc, “Programmer and User Manuals” (MARC Analysis Research Corporation, Palo Alto, CA, USA, 1997).

    Google Scholar 

  28. R. J. M. SMIT, W. A. M. BREKELMANS and F. P. T. BAAIJENS, Int. J. Numer. Methods Engrg., submitted.

  29. G. M. Gusler and G. B. Mckenna, Polym. Eng. Sci. 37 (1997) 1442.

    Google Scholar 

  30. L. E. Govaert and T. Peijs, Mech. of Time Dep. Mat., submitted.

  31. M. Ishikawa, H. Ogawa and I. Narisawa, J. Macromol. Sci.-Phys. B19 (1981) 421.

    Google Scholar 

  32. I. Narisawa and A. F. Yee, in “Materials Science and Technology. A Comprehensive Treatment, Vol. 12,” edited by E. L. Thomas (VCH, Weinheim, 1993) p. 699.

    Google Scholar 

  33. I. Narisawa, M. Ishikawa and H. Ogawa, J. Mater. Sci. 15 (1980) 2059.

    Google Scholar 

  34. R. Hill, “The Mathematical Theory of Plasticity” (Oxford Univ. Press, London, 1950).

    Google Scholar 

  35. R. P. Nimmer and J. T. Woods, Polym. Eng. Sci. 32 (1992) 1126.

    Google Scholar 

  36. L. E. Govaert and T. A. Tervoort, in Proc. 9th Int. Conf. Def., Yield and Fracture of Polymers, Churchill College, Cambridge (The Institute of Materials, London, 1994) P67/1.

    Google Scholar 

  37. C. J. G. Plummer and A. M. Donald. J. Polym. Sci. Polym. Phys. Ed. 27 (1989) 325.

    Google Scholar 

  38. M. Ishikawa, Y. Sato and H. Higuchi, Polymer 37 (1996) 1177.

    Google Scholar 

  39. S. Havriliak, C. A. Cruz and S. E. Slavin, Polym. Eng. Sci. 36 (1996) 2327.

    Google Scholar 

  40. J. C. Simo, in “Cracking and Damage: Strain Localization and Size Effect,” edited by J. Mazars and Z. P. Bažant (Elsevier, London 1989) p. 440.

    Google Scholar 

  41. J. Lai and E. Van der giessen. Mechanics of Materials 25 (1997) 183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smit, R.J.M., Brekelmans, W.A.M. & Meijer, H.E.H. Predictive modelling of the properties and toughness of polymeric materials Part I Why is polystyrene brittle and polycarbonate tough?. Journal of Materials Science 35, 2855–2867 (2000). https://doi.org/10.1023/A:1004711622159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004711622159

Keywords

Navigation