Skip to main content
Log in

Reduction in energy release rate for mode I fracture of a fibre with a cracked coating layer due to small-scale interfacial debonding

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to predict the effect of small-scale interfacial debonding on the energy release rate at a crack tip for mode I fracture of a fibre with a cracked coating layer, an approximate calculation method has been presented. The relation of debonding length, thickness of the coating layer and ratio of elastic modulus of the coating layer to that of the fibre, to the energy release rate of the fibre was calculated for some examples. It was demonstrated that small-scale debonding reduces the energy release rate and, therefore, effectively prevents reduction in fibre strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Metcalfe and M. J. Klein, in “Interface in Metal Matrix Composites”, edited by A. G. Metcalfe (Academic Press, New York, 1974) pp. 125–68.

    Google Scholar 

  2. J. A. Dicarlo, in “Proceedings, Mechanical Behaviour of Metal/Matrix Composites”, edited by J. E. Hack and M. F. Amateau (AIME, Worrendale, PA, 1983) pp. 1–14.

    Google Scholar 

  3. S. Ochiai, K. Osamura and Y. Murakami, in “Progress in Science and Engineering of Composites”, edited by T. Hayashi, K. Kawata and S. Umekawa, (Japan Society for Composite Materials, Tokyo, 1982) pp. 1331–8.

    Google Scholar 

  4. I. H. Khan, Metall Trans. 7A (1976) 1281.

    Article  CAS  Google Scholar 

  5. W. H. Hunt Jr, in “Interfaces in Metal-Matrix Composites”, edited by A. K. Dhingra and S. G. Fishman (Metallurgical Society, Warrendale, PA, 1986) pp. 3–25.

    Google Scholar 

  6. M. Kh. Shoroshorov, L. M. Ustinov, A. M. Zirlin, V. I. Olefilenko and L. V. Vinogradov, J. Mater. Sci. 14 (1979) 1850.

    Article  Google Scholar 

  7. S. Ochiai, S. Urakawa, K. Ameyama and Y. Murakami, Metall. Trans. 11A (1980) 525.

    Article  CAS  Google Scholar 

  8. S. Ochiai and K. Osamura, J. Mater. Sci. 23 (1988) 886.

    Article  Google Scholar 

  9. Idem, Metall. Trans. 21A (1990) 971.

    Article  CAS  Google Scholar 

  10. H. Tada, P. C. Paris and G. R. Irwin, in “The Stress Analysis Handbook”, edited by H. Tada, P. C. Paris and G. R. Irwin (Del Research Corporation, Hellertown, PA, 1973) pp. 1–31.

    Google Scholar 

  11. J. M. Hedgepeth, NASA TN D-882 (1961).

  12. S. Ochiai and K. Osamura, J. Mater. Sci. 24 (1989) 3865.

    Article  CAS  Google Scholar 

  13. C. Zweben, Eng. Frac. Mech. 6 (1974) 1.

    Article  Google Scholar 

  14. E. D. Reedy Jr, Mech. Phys. Solids 28 (1980) 265.

    Article  CAS  Google Scholar 

  15. J. G. Goree and R. S. Gross, Eng. Fract. Mech. 13 (1980) 563.

    Article  Google Scholar 

  16. J. A. Narin, J. Compos. Mater. 22 (1988) 561.

    Article  Google Scholar 

  17. H. Fukuda, in “Achievement in Composites in Japan and the United States”, Proceedings of Japan-US CCM-V, edited by A. Kobayashi (Japan Society for Composite Materials, Tokyo, 1990) pp. 529–34.

    Google Scholar 

  18. N. F. Dow, GEC Missile and Space Division, Report R63SD61, quoted by G. S. Holister and C. Thomas, in “Fiber Reinforced Materials” (Elsevier, London, 1966) p. 23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochiai, S., Hojo, M. Reduction in energy release rate for mode I fracture of a fibre with a cracked coating layer due to small-scale interfacial debonding. JOURNAL OF MATERIALS SCIENCE 31, 2027–2034 (1996). https://doi.org/10.1007/BF00356622

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356622

Keywords

Navigation