Skip to main content
Log in

Decomposition of Al2TiO5-MgTi2O5 solid solutions: a thermodynamic approach

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The decomposition of Al1−xMgxTi1+xO5 solid solutions with x=0.0, 0.1, 0.2, 0.4, 0.5 and 0.6 was studied in the temperature range 900–1175 °C using a 250 h annealing test. As x increases from 0–0.2 there is a strong stabilizing effect and the decomposition temperature decreases from 1280 °C (Al2TiO5) down to ≈ 1125 °C. For 0.2⩽x⩽0.5 the decomposition temperature does not decrease further. For x=0.6 no decomposition was observed. For x⩽0.5 decomposition is complete or almost complete at 1000 °C; at 900 °C transformation is kinetically hindered and solid solutions with x=0.2 and 0.4 are unaffected by the thermal treatment. A relationship between the decomposition temperature and the parameter x has been derived using the regular solution model to describe the Al2(1−x)MgxTi(1+x)O5 solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bayer, J. Less-Common Metals 24 (1971) 129.

    Article  CAS  Google Scholar 

  2. J. J. Cleveland and R. C. Bradt, J. Am. Ceram. Soc. 61 (1978) 478.

    Article  CAS  Google Scholar 

  3. Y. Ohya, Z. Nakagawa and K. Hamano, ibid. 70 (1987) C184.

    Article  Google Scholar 

  4. F. J. Parker and R. W. Rice, ibid. 72 (1989) 2364.

    Article  CAS  Google Scholar 

  5. D. P. H. Hasselman, K. Y. Donaldson, E. M. Anderson and T. A. Johnson, ibid. 76 (1993) 2180.

    Article  CAS  Google Scholar 

  6. P. Stingl, J. Heinrich and J. Huber, in “Proceedings of the 2nd International Symposium on Ceramic Materials and Components for Engines”, Lübeck-Travemünde (FRG), April 1986, edited by W. Bunk and H. Hausner (DKG, Bad Honnef, 1986) p. 369.

    Google Scholar 

  7. C.-S. Hwang, Z. Nakagawa and K. Hamano, J. Ceram. Soc. Jpn Int. Ed. 102 (1994) 253.

    Google Scholar 

  8. N. P. Padture, S. J. Bennison and H. M. Chan, J. Am. Ceram. Soc. 76 (1993) 2312.

    Article  CAS  Google Scholar 

  9. G. Rehfeld, Th. Staudt and C. Zografou, Ceram. Trans., 1 (1988) 1100.

    CAS  Google Scholar 

  10. E. Kato, K. Daimon and J. Takahashi, J. Am. Ceram. Soc. 63 (1980) 355.

    Article  CAS  Google Scholar 

  11. H. Moroshima, Z. Kato, K. Uematsu, K. Saito, T. Yano and N. Ootsuka, J. Mater. Sci. Lett. 6 (1987) 389.

    Article  Google Scholar 

  12. F. J. Parker, J. Am. Ceram. Soc. 73 (1990) 929.

    Article  CAS  Google Scholar 

  13. H. Wohlfromm, J. S. Moya and P. Pena, J. Mater. Sci. 25 (1990) 3753.

    Article  CAS  Google Scholar 

  14. M. S. J. Gani and R. McPherson, Thermochim. Acta 7 (1973) 251.

    Article  CAS  Google Scholar 

  15. A. Navrotsky, Am. Mineral. 60 (1975) 249.

    CAS  Google Scholar 

  16. B. Morosin and R. N. Lynch, Acta Crystallogr. B28 (1972) 1040.

    Article  Google Scholar 

  17. B. A. Wechsler and A. Navrotsky, J. Solid State Chem. 55 (1984) 165.

    Article  CAS  Google Scholar 

  18. B. Freudenberg and A. Mocellin, J. Am. Ceram. Soc. 70 (1987) 33.

    Article  CAS  Google Scholar 

  19. T. Kameyama and T. Yamaguchi, J. Ceram. Soc. Jpn 84 (1976) 589.

    CAS  Google Scholar 

  20. E. Kato, K. Daimon and Y. Kobayashi, ibid. 86 (1978) 626.

    CAS  Google Scholar 

  21. E. Kato, Y. Kobayashi and K. Daimon, ibid. 87 (1979) 81.

    CAS  Google Scholar 

  22. H. W. Hennicke and W. Lingenberg, Ber DKG/CFI 63 (1986) 100.

    CAS  Google Scholar 

  23. M. Ishitsuka, T. Sato, T. Endo and M. Shimada, J. Am. Ceram. Soc. 70 (1987) 69.

    Article  CAS  Google Scholar 

  24. G. Tilloca, J. Mater. Sci. 26 (1991) 2809.

    Article  CAS  Google Scholar 

  25. G. Eriksson and A. D. Pelton, Metall. Trans. 24B (1993) 795.

    Article  CAS  Google Scholar 

  26. O. Knacke, O. Kubaschewski and K. Hesselmann, “Thermochemical properties of inorganic substances” (Springer, Berlin, 1991).

    Google Scholar 

  27. E. Kato, K. Daimon, J. Takahashi, R. Kato and K. Hamano, Report of the Research Laboratory of Engineering Materials, Tokyo Institute of Technology, No. 9 (1984) 87, cited by H. A. J. Thomas and R. Stevens, Br. Ceram. Trans. J. 88 (1989) 184.

  28. W. P. Byrne, R. Morrell and J. Lawson, Sci. Ceram. 14 (1988) 775.

    CAS  Google Scholar 

  29. H. P. Klug and L. E. Alexander, “X-Ray Diffraction Procedures” (Wiley, New York, 1974) Ch. 7.2.

    Google Scholar 

  30. K. Yvon, W. Jeitschko and E. Parthe, J. Appl. Crystallogr. 10 (1977) 73.

    Article  Google Scholar 

  31. H. Wohlfromm, T. Epicier, J. S. Moya, P. Pena and G. Thomas, J. Eur. Ceram. Soc. 7 (1991) 385.

    Article  CAS  Google Scholar 

  32. H. St. C. O'Neil and A. Navrotsky, Am. Mineral. 68 (1983) 181.

    Google Scholar 

  33. JCPDS Powder Diffraction File, card 35-796 (International Centre for Diffraction Data, Swarthmore, USA, 1989).

  34. W. H. Press, B. P. Flannery, S. A. Teukolski and W. T. Vetterling, “Numerical Recipes” (Cambridge University Press, Cambridge, 1989) p. 521–8.

    Google Scholar 

  35. B. Freudenberg and A. Mocellin, J. Mater. Sci. 25 (1990) 3701.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buscaglia, V., Battilana, G., Leoni, M. et al. Decomposition of Al2TiO5-MgTi2O5 solid solutions: a thermodynamic approach. JOURNAL OF MATERIALS SCIENCE 31, 5009–5016 (1996). https://doi.org/10.1007/BF00355899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355899

Keywords

Navigation