Skip to main content
Log in

Effects of surface oxide layers on crack initiation and growth of HSLA steel under cyclic loading in air and in ultrahigh vacuum

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effects of the thermally grown wustite on the fatigue crack initiation and growth in HSLA steel are evaluated as a function of oxide thickness, strain amplitude, and gaseous environment in the push-pull plastic strain control mode, with special attention being given to the early stage of microcrack initiation. Specimens with a wustite surface layer thermally grown to 0.2 and 0.6 μm thicknesses show predominantly intergranular cracking at plastic strain amplitudes of 5×10−4 and 1×10−3 both in air and in ultrahigh vacuum (UHV), in contrast to the as-polished specimens where slip band cracking is the favoured mode. The cracking mode in the oxide layer is discussed in terms of the strain amplitude and the dislocation behaviour near the oxide/metal interface. The features of microcrack initiation in the oxide layer is not affected by the gaseous environment. Once, however, the surface oxide fractures, the rate of crack growth through the base metal is greatly reduced in UHV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Roscoe, Phil. Mag. 21 (1936) 399.

    Article  CAS  Google Scholar 

  2. V. K. Sethi and R. Gibala, in “Surface Effects in Crystal Plasticity”, edited by R. M. Latanision and J. T. Fourie, NATO Advanced Study Institute Series, Series E, (Noordhoff, Leyden, 1977) p. 599.

    Chapter  Google Scholar 

  3. H. J. Gough and D. G. Sopwith, J. Inst. Metals 49 (1932) 93.

    Google Scholar 

  4. Idem, ibid. 52 (1935) 55.

    Google Scholar 

  5. C. M. Hudson and S. K. Seward, Eng. Frac. Mech. 8 (1976) 315.

    Article  Google Scholar 

  6. B. I. Verkin and N. M. Grinberg, Mater. Sci. Eng. 41 (1979) 149.

    Article  CAS  Google Scholar 

  7. R. Wang, H. Mughrabi, S. McGovern and M. Rapp, ibid. 65 (1984) 219.

    Article  CAS  Google Scholar 

  8. D. Majumdar and Y. W. Chung, Scripta Metall. 16 (1982) 791.

    Article  CAS  Google Scholar 

  9. C. Laird and G. C. Smith, Phil. Mag. 8 (1963) 1945.

    Article  CAS  Google Scholar 

  10. P. S. Maiya, Scripta Metall. 9 (1975) 1141.

    Article  Google Scholar 

  11. Idem, ibid. 11 (1977) 331.

    Article  CAS  Google Scholar 

  12. W. J. Lee, S. P. Bhat, Y. W. Chung and M. E. Fine, in Proceedings of the 3rd International Conference on Fatigue and Fatigue Thresholds: Fatigue '87, Vol. III, Charlottesville, June 1987, edited by R. O. Ritchie and E. A. Starke, Jr (EMAS, UK, 1987) p. 1211.

    Google Scholar 

  13. D. Majumdar, Ph. D. Diss., Dept. of Materials Sci. and Eng., Northwestern University, 1983.

  14. W. J. Lee, J. P. Baker, Y. W. Chung and M. E. Fine, Rev. Sci. Instrum. 57 (1986) 2854.

    Article  CAS  Google Scholar 

  15. Y. H. Kim and M. E. Fine, Met. Trans. 13A (1982) 59.

    Article  CAS  Google Scholar 

  16. G. Gonzalez and C. Laird, ibid. 14A (1983) 2507.

    Article  CAS  Google Scholar 

  17. R. F. Mehl and E. F. McCandless, Trans. AIME 125 (1937) 531.

    Google Scholar 

  18. G. A. Beitel and E. Q. Bowles, J. Metal Sci. 5 (1971) 85.

    Article  CAS  Google Scholar 

  19. W. J. Baxter and S. R. Rouze, J. Appl. Phys. 49 (1978) 4233.

    Article  CAS  Google Scholar 

  20. T. K. G. Swami, Ph.D. Diss., Dept. of Materials Sci. and Eng., Northwestern University, 1981.

  21. A. K. Head, Phil. Mag. 44 (1953) 92.

    Article  CAS  Google Scholar 

  22. Idem, Australian J. Phys. 13 (1960) 278.

    Article  CAS  Google Scholar 

  23. G. H. Conners, Int. J. Eng. Sci. 5 (1967) 25.

    Article  Google Scholar 

  24. R. Weeks, J. Dundurs and M. Stippes, Inst. J. Eng. Sci. 6 (1968) 365.

    Article  Google Scholar 

  25. C. V. Cooper and M. E. Fine, Met. Trans. 16A (1985) 641.

    Article  CAS  Google Scholar 

  26. J. S. Vermaak and J. H. van der Merwe, Phil. Mag. 10 (1964) 785.

    Article  CAS  Google Scholar 

  27. C. V. Cooper, Ph.D. Diss. Dept. of Materials Sci. and Eng., Northwestern University, 1983.

  28. J. C. Grosskreutz, Surf. Sci. 8 (1967) 173.

    Article  CAS  Google Scholar 

  29. J. C. Grosskreutz and C. Q. Bowles, in “Environment-Sensitive Mechanical Behavior”, edited by A. R. C. Westwood and N. S. Stoloff (Gordon and Breach, New York/London, 1966) p. 67.

    Google Scholar 

  30. J. C. Grosskreutz, in “Corrosion Fatigue”, NACE-2 (1972) p. 201.

  31. R. G. Gates and W. A. Wood, J. Inst. Metals 96 (1968) 242.

    CAS  Google Scholar 

  32. G. W. Stickley and J. O. Lyst, J. Mater. 1 (1966) 19.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, Y.W., Lee, W.J. Effects of surface oxide layers on crack initiation and growth of HSLA steel under cyclic loading in air and in ultrahigh vacuum. Journal of Materials Science 30, 6370–6376 (1995). https://doi.org/10.1007/BF00369691

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369691

Keywords

Navigation