Skip to main content
Log in

Nucleation mechanism of the cubic σ phase in squeeze-cast aluminium matrix composites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An Al-4.3 wt% Cu-2.0 wt% Mg alloy reinforced with 20 vol% reinforcing fibres was examined after a T7 heat treatment. The expected precipitate phase was equilibrium S′ (Al2CuMg), which was confirmed to form in the monolithic alloy. However when this Al-Cu-Mg alloy was squeeze-cast into a fibre preform and given an identical T7 heat treatment a number of other phases also nucleated; these included θ′ (Al2Cu), β′ (Mg2Si) and the cubic σ phase (Al5Cu6Mg2). These additional phases were determined to nucleate and grow rapidly during the water-quench following solution treatment. The existence of excess Si (approximately 0.5 wt%) in the matrix was determined to be responsible for nucleation of these additional phases. This extra Si entered the composite matrix during squeeze-casting through breakdown of an SiO2 layer which existed at the fibre interfaces. During quenching Si clusters rapidly form and provide nucleation sites for the σ and θ′ phases. The Si clusters apparently created a compressive strain in the matrix which attracted a high concentration of small Cu atoms to their interface. The σ phase nucleated in this high-Cu region since, on a localized scale, σ became the equilibrium phase. This type of nucleation process may also explain the enhanced precipitate nucleation which occasionally takes place in other alloy systems when trace amounts of certain elements are added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Schueller, A. K. Sachdev andF. E. Wawner,Scripta Metall. 27 (1992) 617.

    Google Scholar 

  2. Idem, J. Mater. Sci. 28 (1993) in press.

  3. G. C. Weatherly, PhD thesis, University of Cambridge (1966).

  4. R. N. Wilson, D. M. Moore andP. J. E. Forsyth,J. Inst. Metals 95 (1967) 177.

    Google Scholar 

  5. H. Suzuki, I. Araki, M. Kanno andK. Itoi,Trans. Jpn Inst. Light Met. 27 (5) (1977) 239.

    Google Scholar 

  6. J. B. M. Nuyten,Acta Metall. 15 (1967) 1765.

    Google Scholar 

  7. A. H. Sully, H. K. Hardy andT.J. Heal,J. Inst. Met. 76 (1949) 269.

    Google Scholar 

  8. H. K. Hardy,ibid. 78 (1950–51) 169.

    Google Scholar 

  9. R. Sankaran andC. Laird,Mater. Sci. Engng,14 (1974) 271.

    Google Scholar 

  10. W. X. Feng, F. S. Lin andE. A. Starke Jr, in “Aluminum-Lithium Alloys II”, edited by E. A. Starke, Jr and T. H. Sanders Jr (TMS-AIME, Warrendale, PA, 1983) p. 235.

    Google Scholar 

  11. J. H. Auld andJ. T. Vietz, in “The Mechanism of Phase Transformations in Crystalline Solids”, Monograph No. 33 (Institute of Metals, London, 1969) p. 77.

    Google Scholar 

  12. L. Auran, H. Westengen andO. Reiso, in Proceedings of 1st Riso International Symposium on Metallurgy and Materials Science, edited by N. Hansen, A. Jones, T. Leffers, Riso National Laboratory, Roskilde, Denmark (1980) p. 526.

    Google Scholar 

  13. L. F. Mondolfo, “Aluminum Alloys: Structure and Properties” (Butterworth, London-Boston, 1976) p. 502.

    Google Scholar 

  14. R. N. Wilson andP. G. Partridge,Acta Metall. 13 (1965) 1321.

    Google Scholar 

  15. R. M. Akin, Jr, NASA Contract Report 4365 (1991) p. 55.

  16. R. N. Wilson,J. Inst. Met. 97 (1969) 80.

    Google Scholar 

  17. B. R. Henriksen,Composites 21 (1990) 333.

    Google Scholar 

  18. S. L. Marr andF. K. Ko,Ceram. Eng. Sci. Proc. 11 (1990) 1554.

    Google Scholar 

  19. H. J. Hegge, J. Boetje andJ. M. DeHosson,J. Mater. Sci. 25 (1990) 2335.

    Google Scholar 

  20. C. H. Li, L. Nyborg, S. Bengtson, R. Warren andI. Olefjord, in Proceedings, “Interfacial Phenomena in Composite Materials '89”, edited by F. R. Jones (Butterworth, Guildford, 1989) p. 253.

    Google Scholar 

  21. A. Munitz, M. Metzger andR. Mehrabian,Met. Trans. A 10A (1979) 1491.

    Google Scholar 

  22. C. G. Levi, G. J. Abbaschian andR. Mehrabian,ibid. 9A (1978) 697.

    Google Scholar 

  23. “Metals Handbook,” 8th Edn, Vol. 8 (ASM, Metals Park, Ohio, 1973) p. 386.

  24. L. F. Mondolfo, “Aluminum Alloys: Structure and Properties (Butterworth, London-Boston, 1976) p. 499.

    Google Scholar 

  25. K. C. Russell, “Phase Transformations” (ASM, Metals Park, Ohio, 1970) p. 291.

    Google Scholar 

  26. A. J. Perry andK. M. Entwistle,J. Inst. Met. 96 (1968) 344.

    Google Scholar 

  27. J. Burke andA. D. King,Phil. Mag. 21 (1970) 7.

    Google Scholar 

  28. A. J. Perry andK. M. Entwistle,J. Inst. Met. 96 (1968) 344.

    Google Scholar 

  29. J. Takamura, K. Okazaki andI. G. Greenfield,J. Phys. Soc. Jpn 18 (1963) 78.

    Google Scholar 

  30. J. Takamura, M. Koike andK. Furukawa,J. Nucl. Mater. 69/70 (1978) 738.

    Google Scholar 

  31. L. F. Mondolfo, “Aluminum Alloys: Structure and Properties” (Butterworth, London-Boston, 1976) p. 369.

    Google Scholar 

  32. H. J. Rach andR. W. Krenzer,Met. Trans. A 8A (1977) 335.

    Google Scholar 

  33. H. S. Rosenbaum andD. Turnbull,Acta Metall. 6 (1958) 653.

    Google Scholar 

  34. I. Dutta andS. M. Allen,J. Mater. Sci. Lett. 10 (1991) 323.

    Google Scholar 

  35. I. Kovacs, J. Lendvai andE. Nagy,Acta Metall. 20 (1972) 975.

    Google Scholar 

  36. M. F. Ashby andG. C. Smith J. Inst. Met. 91 (1962–63) 182.

    Google Scholar 

  37. A. T. Stewart andJ. W. Martin,ibid. 98 (1970) 62.

    Google Scholar 

  38. D. W. Pashley, J. W. Rhodes andA. Sendorek,ibid. 94 (1966) 41.

    Google Scholar 

  39. D. L. W. Collins,ibid. 86 (1957–58) 325.

    Google Scholar 

  40. D. K. Chatterjee andK. M. Entwistle,ibid. 101 (1973) 53.

    Google Scholar 

  41. N. E. Fink,Acta Metall. 7 (1959) 228.

    Google Scholar 

  42. E. Ozawa andH. Kimura,Mater. Sci. Engng,8 (1971) 327.

    Google Scholar 

  43. R. Geffken andE. Miller,Trans. TMS-AIME 242 (1968) 2323.

    Google Scholar 

  44. D. W. Pashley, M. H. Jacobs andJ. T. Vietz,Phil. Mag. 16 (1967) 51.

    Google Scholar 

  45. L. F. Mondolfo, “Aluminum Alloys: Structure and Properties” (Butterworth, London-Boston, 1976) p. 568.

    Google Scholar 

  46. G. B. Brook andB. A. Hatt, in “The Mechanism of Phase Transformations in Crystalline Solids”, Monograph No. 33 (Institute of Metals, London, 1967) p. 82.

    Google Scholar 

  47. J. T. Vietz andI. J. Polmear,J. Inst. Met. 94 (1966) 410.

    Google Scholar 

  48. J. A. Ibers,Acta Crystallogr. 10 (1957) 86.

    Google Scholar 

  49. V. A. Phillips andJ. D. Livingston,Phil. Mag. 7 (1962) 969.

    Google Scholar 

  50. M. F. Ashby andL. M. Brown,ibid. 8 (1963) 1083.

    Google Scholar 

  51. N. L. Peterson andS. J. Rothman,Phys. Rev. B 1 (1970) 3264.

    Google Scholar 

  52. J. M. Silcock andB. A. Parsons, Report R 10/67 (Fulmer Research Institute, 1958).

  53. M. Vogelsang, R. J. Arsenault andR. Fisher,Met. Trans. 17A (1986) 379.

    Google Scholar 

  54. “Metals Handbook”, 8th Edn, Vol. 8 (ASM, Metals Park, Ohio, 1973) pp. 258, 261, 263.

  55. H. Suzuki, M. Kanno andK. Fukunaga,J. Jpn. Inst. Light Met. 25 (1975) 413.

    Google Scholar 

  56. H. Suzuki, M. Kanno andO. Kanoh,ibid. 29 (1979) 223.

    Google Scholar 

  57. A. K. Mukhopadhyay, G. J. Shiflet andE. A. Starke Jr., in Proceedings of Morris E. Fine Symposium, edited by P. K. Liaw, J. R. Weertman, H. L. Marcus and J. S. Santner (TMS, Warrendale, PA, 1991) p. 283.

    Google Scholar 

  58. A. Lutts,Acta Metall 9 (1961) 577.

    Google Scholar 

  59. J. D. Embury andR. B. Nicholson,ibid. 13 (1965) 403.

    Google Scholar 

  60. O. Reiso, H. Westengen, L. Auran andArdal Og Sunndal Verk, Sunndaisora (Norway).

  61. B. C. Muddle andI. J. Polmear,Acta Metall. 37 (1989) 777.

    Google Scholar 

  62. K. M. Knowles andW. M. Stobbs,Act. Crystallogr. B44 (1988) 207.

    Google Scholar 

  63. J. A. Taylor, B. A. Parker andI. J. Polmear,Met. Sci. 20 (1978) 478.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schueller, R.D., Wawner, F.E. & Sachdev, A.K. Nucleation mechanism of the cubic σ phase in squeeze-cast aluminium matrix composites. J Mater Sci 29, 424–435 (1994). https://doi.org/10.1007/BF01162502

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01162502

Keywords

Navigation