Skip to main content
Log in

Basic parameters for the short-range order of amorphous ternary alloys with applications to practical cases

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A procedure was considered for determining theoretical expressions of the area under the first radial distribution function (RDF) peak, and of the relative co-ordination numbers, n ii which depend on the co-ordination hypotheses and on the numbers of bonds between elements of a single type of pair. In this method, two important facts were taken into account. First, the products of atomic factors are functions of s (the scattering vector module) and so they cannot always be considered constant; they were therefore approximated by polynomic functions which best fitted the results obtained from the atomic factors given in international tables. Secondly, consideration of the influence of the structural hypotheses (co-ordinations, existence of certain types of bond) on the area and co-ordination numbers mentioned enabled the most probable local order to be postulated. In order to test the reliability of this method, the method was applied to a set of alloys, quoted in the literature, and the theoretical results obtained agreed very satisfactorily with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Zallen, “The physics of amorphous solids” (Wiley, New York, 1983).

    Book  Google Scholar 

  2. S. R. Elliot, “Physics of amorphous materials” (Longman Group Limited, Harlow, 1984).

    Google Scholar 

  3. J. Cornet and J. Schneider, “The physics of non-crystalline solids”, edited by G. H. Frischat (Trans. Tech. Publications, Claustahl-Zellerfeld, Germany, 1977).

    Google Scholar 

  4. B. E. Warren, “X-ray diffraction”, (Addison-Wesley, Reading, 1969).

    Google Scholar 

  5. J. Vázquez, and F. Sanz, Ann. Fis. B 80 (1984) 31.

    Google Scholar 

  6. J. Vázquez, L. Esquivias, P. Villares and R. Jiménez-Garay, ibid. 81 (1985) 223.

    Google Scholar 

  7. J. Vázquez, P. Villares and R. Jiménez-Garay, Mater. Lett. 4 (1986) 485.

    Article  Google Scholar 

  8. J. Vázquez, M. Casas-Ruiz, R. A. Ligero and R. Jiménez-Garay, Mater. Chem. Phys. 32 (1992) 63.

    Article  Google Scholar 

  9. P. Debye, Ann. Physik 46 (1915) 809.

    Article  CAS  Google Scholar 

  10. F. Zernicke and J. A. Prins, Z. Physik 41 (1927) 184.

    Article  Google Scholar 

  11. C. Finbak, Acta Chem. Scand. 3 (1949) 1279.

    Article  CAS  Google Scholar 

  12. J. Waser and V. Schomaker, Rev. Modern Phys. 25 (1953) 671.

    Article  CAS  Google Scholar 

  13. P. Olano, C. Alberdi and F. Sanz, Ann. Fis. 76 (1980) 237.

    CAS  Google Scholar 

  14. J. Vázquez, R. A. Ligero, P. Villares and R. Jiménez-Garay, Mater. Chem. Phys 26 (1990) 347.

    Article  Google Scholar 

  15. J. J. del Val, L. Esquivias, P. Olano and F. Sanz, J. Non-Cryst. Solids 70 (1985) 211.

    Article  Google Scholar 

  16. R. A. Ligero, J. Vázquez, P. Villares and R. Jiménez-Garay, J. Mater. Sci. 22 (1987) 4357.

    Article  CAS  Google Scholar 

  17. M. Domínguez, J. Vázquez, P. Villares and R. Jiménez-Garay, J. Phys Chem. Solids 52 (1991) 567.

    Article  Google Scholar 

  18. M. Casas-Ruiz, J. Vázquez, R. A. Ligero and R. Jiménez-Garay, Mater. Lett. 14 (1992) 143.

    Article  CAS  Google Scholar 

  19. G. N. Greaves and E. A. Davis, Phil. Mag. 29 (1974) 1201.

    Article  CAS  Google Scholar 

  20. L. Pauling, “Uniones Químicas” (Kapelusz, Buenos Aires, 1969).

    Google Scholar 

  21. L. Esquivias and F. Sanz, J. Non-Cryst. Solids 70 (1985) 221.

    Article  CAS  Google Scholar 

  22. A. d'Anjou and F. Sanz, ibid. 28 (1978) 319.

    Article  CAS  Google Scholar 

  23. W. B. Pearson, “Lattice spacings and structures of metals and alloys”, (Pergamon, London, 1957).

    Google Scholar 

  24. R. W. G. Wyckoff, “Crystal structures” (Wiley, New York, 1963).

    Google Scholar 

  25. J. Cornet and D. Rossier, J. Non-Cryst. Solids 12 (1973) 85.

    Article  CAS  Google Scholar 

  26. P. Chering and P. Unger, in “The physics of selenium and tellurium”, edited by W. Cooper (Pergarnon, London 1969).

    Google Scholar 

  27. N. de la Rosa-Fox, L. Esquivias, P. Villares and R. Jiménez-Garay, Phys. Rev. B 33 (1986) 4094.

    Article  Google Scholar 

  28. J. Vázquez, E. Márquez, P. Villares and R. Jiménez-Garay, Mater. Lett. 4 (1986) 360.

    Article  Google Scholar 

  29. J. Vázquez, P. Villares and R. Jiménez-Garay, ibid. 4 (1986) 171.

    Article  Google Scholar 

  30. R. B. Heslop and K. Jones, “Inorganic chemistry” (Elsevier, Amsterdam, 1976).

    Google Scholar 

  31. F. S. Bloss, “Crystallographic and crystal chemistry” (Holt, Rinehart and Winston, New York, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez, J., Casas-Ruiz, M., Ligero, R.A. et al. Basic parameters for the short-range order of amorphous ternary alloys with applications to practical cases. JOURNAL OF MATERIALS SCIENCE 28, 6598–6604 (1993). https://doi.org/10.1007/BF00356402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356402

Keywords

Navigation