Skip to main content
Log in

Formation of solid particles by hydrolysis of cerium (IV) sulphate

Part I Time evolution of the hydrolysed solutions

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Uniform particles of controlled morphology of CeOSO4·H2O may be prepared by forced hydrolysis, at 90 °C, of solutions of cerium (IV) sulphate. A structural description is given here of the different steps of the forced hydrolysis before precipitation takes place. It uses essentially the complementary techniques of extended X-ray absorption fine structure spectroscopy and small-angle X-ray scattering to characterize, at different length scales, the structural evolution of the solution. The first step, which occurs as temperature is raised above 60 °C, is an inorganic polymerization that transforms molecular dimeric precursors Ce2(OH)2O12 into colloidal particles. In the second step, at the ageing temperature of 90 °C, no chemical and structural changes are revealed; the solution has reached an equilibrium state characterized by the presence of 3 nm large monodisperse colloids which use 85% of the initial cerium ions and smaller particles (15%). The detailed local structure around the cerium atoms in the colloids is compatible with the formation of a chain-like structure of Ce(IV) ions via hydroxo bridges (Ce(OH)2) 2 n+ n . A mechanism to explain the transformation of precursors into colloids is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Hench and D. R. Ulrich (Eds) “Ultrastructure Processing of Ceramics, Glasses and Composites” (Wiley-Interscience, New-York, 1984).

    Google Scholar 

  2. E. Matijevic, Pure Appl. Chem. 60 (1988) 1479.

    Article  CAS  Google Scholar 

  3. Ph. Tailhades, P. Mollard, A. Rousset and M. Gougeon, IEEE Trans. Magnetics 26 (1990) 1822.

    Article  CAS  Google Scholar 

  4. E. Matijevic, Progr. Colloid. Polym. Sci. 61 (1976) 24.

    Article  CAS  Google Scholar 

  5. Idem, Pure Appl. Chem. 52 (1980) 1193.

    Article  Google Scholar 

  6. Idem, Acc. Chem. Res. 14 (1981) 22.

    Article  CAS  Google Scholar 

  7. Idem, Ann. Rev. Mater. Sci. 15 (1985) 483.

    Article  CAS  Google Scholar 

  8. Idem, Langmuir 2 (1986) 12.

    Article  CAS  Google Scholar 

  9. T. Sugimoto, Adv. Colloid Interface Sci. 28 (1987) 65.

    Article  CAS  Google Scholar 

  10. Idem, Mater. Res. Soc. Bull. 14 (1989) 23.

    Article  CAS  Google Scholar 

  11. M. Haruta and B. Delmon, J. Chim. Phys. 83 (1986) 859.

    Article  CAS  Google Scholar 

  12. J. Livage, M. Henry and C. Sanchez, Pure Solid State Chem. 18 (1988) 259.

    Article  CAS  Google Scholar 

  13. J. Livage, M. Henry, J. P. Jolivet and C. Sanchez, Mater. Res. Soc. Bull. 14 (1989) 18.

    Google Scholar 

  14. R. Demchak and E. Matijevic, J. Colloid. Interface. Sci. 31 (1969) 257.

    Article  CAS  Google Scholar 

  15. E. Matijevic and R. S. Sapieszko, ibid. 50 (1975) 567.

    Article  CAS  Google Scholar 

  16. R. S. Sapieszko, R. C. Patel and E. Matijevic, J. Phys. Chem. 81 (1977) 1061.

    Article  CAS  Google Scholar 

  17. E. Matijevic and P. Scheiner, J. Colloid Interface. Sci. 63 (1978) 509.

    Article  CAS  Google Scholar 

  18. E. Matijevic, M. Budnik and L. Meites, ibid. 61 (1977) 302.

    Article  CAS  Google Scholar 

  19. W. B. Scott and E. Matijevic, ibid. 66 (1978) 447.

    Article  CAS  Google Scholar 

  20. H. Sasaki, E. Matijevic and E. Barouch, ibid. 76 (1980) 319.

    Article  CAS  Google Scholar 

  21. N. B. Milic and E. Matijevic, ibid. 85 (1982) 306.

    Article  CAS  Google Scholar 

  22. S. Hamada, K. Bando and Y. Kudo, J. Chem. Soc. Jpn 6 (1984) 1068.

    Google Scholar 

  23. D. H. Buss, G. Schaumberg and O. Glemser, Angew. Chem. 97 (1985) 1050.

    Article  CAS  Google Scholar 

  24. M. A. Blesa, A. J. G. Maroto, S. I. Passaggio, N. E. Figliolia and G. Rigotti, J. Mater. Sci. 20 (1985) 4601.

    Article  CAS  Google Scholar 

  25. W. P. Hsu, L. Ronnquist and E. Matijevic, Langmuir 4 (1988) 31.

    Article  CAS  Google Scholar 

  26. M. Castellano and E. Matijevic, Chem. Mater. 1 (1989) 78.

    Article  CAS  Google Scholar 

  27. K. Yura, K. C. Fredrikson and E. Matijevic, Colloid Surf. 50 (1990) 281.

    Article  CAS  Google Scholar 

  28. V. Briois, C. E. Williams, H. Dexpert, M. Henry, J. P. Jolivet, F. Deneuve and C. Magnier, in preparation.

  29. V. Briois, C. E. Williams, H. Dexpert, F. Villain, M. Verdaguer, A. Pourpoint, F. Deneuve and C. Magnier, in preparation.

  30. A. H. Kunz, Anal. Chem. 53 (1931) 98.

    CAS  Google Scholar 

  31. E. Wadsworth, F. R. Duke and C. A. Goetz, Anal. Chem. 12 (1957) 1824.

    Article  Google Scholar 

  32. J. M. Dubuisson, J. M. Dauvergne, C. Depautex, P. Vachette and C. E. Williams, Nucl. Instrum. Meth. Phys. Res. A246 (1986) 636.

    Article  CAS  Google Scholar 

  33. A. Guinier and G. Fournet, “Small Angle Scattering of X-rays” (Wiley, New York, 1955).

    Google Scholar 

  34. O. Glatter, Acta Phys. Aust. 36 (1972) 307.

    Google Scholar 

  35. O. Glatter and O. Kratky (Eds) “Small Angle X-Ray Scattering” (Academic Press, London, 1982).

    Google Scholar 

  36. Ph. Sainctavit, J. Petiau, A. Manceau, R. Rivallant, M. Belakhovsky and G. Renaud, Nucl. Instrum. Meth. Phys. Res. A273 (1988) 423.

    Article  CAS  Google Scholar 

  37. P. Lagarde, M. Lemonnier and H. Dexpert, Physica B 158 (1989) 337.

    Article  CAS  Google Scholar 

  38. C. Prieto, P. Lagarde, H. Dexpert, V. Briois, F. Villain and M. Verdaguer, Meas. Sci. Technol. 3 (1992) 325.

    Article  CAS  Google Scholar 

  39. D. E. Sayers, F. W. Lytle and E. A. Stern, Adv. X-Ray Anal. 13 (1970) 248.

    Google Scholar 

  40. D. E. Sayers, E. A. Stern and F. W. Lytle, Phys. Rev. Lett. 27 (1971) 1204.

    Article  CAS  Google Scholar 

  41. F. W. Lytle, D. E. Sayers and E. A. Stern, Phys. Rev. B 11 (1975) 4825.

    Article  CAS  Google Scholar 

  42. E. A. Stern, D. E. Sayers and F. W. Lytle, ibid. 11 (1975) 4836.

    Article  CAS  Google Scholar 

  43. B. K. Teo, “Inorganic Chemistry Concepts” Vol. 9, “EXAFS: Basic Principles and Data Analysis” (Springer, Berlin, 1986).

    Book  Google Scholar 

  44. A. G. McKale, B. W. Veal, A. P. Paulikas, S. K. Chan and G. S. Knapp, J. Am. Chem. Soc. 110 (1988) 3763.

    Article  CAS  Google Scholar 

  45. F. Taulelle, private communication (1991).

  46. V. Briois, J. Lemerle and J. Eberle, in preparation.

  47. T. Svedberg and K. O. Pedersen, “The Ultracentrifuge” (Clarendon Press, Oxford, London, 1940).

    Google Scholar 

  48. G. Champetier, in “Chimie Macromoléculaire”, Vol II (Hermann, Paris, 1972) Ch. V.

    Google Scholar 

  49. L. T. Bugaenko and H. Kuan-Lin, Russ. J. Inorg. Chem. 8 (1963) 1299.

    Google Scholar 

  50. T. N. Bondareva, V. F. Barkovskii and T. V. Velikanova, ibid. 10 (1965) 67.

    Google Scholar 

  51. L. V. Trubacheva and N. I. Pechurova, ibid. 26 (1981) 1745.

    Google Scholar 

  52. O. Lindgren, Acta Chem. Scand. A31 (1977) 163.

    Article  CAS  Google Scholar 

  53. G. Lundgren, Arkiv Kemi 10 (1956) 183.

    CAS  Google Scholar 

  54. O. Lindgren, Acta Chem. Scand. A31 (1977) 453.

    Article  CAS  Google Scholar 

  55. G. V. Trofimov and V. I. Belokoskov, Russ. J. Inorg. Chem. 13 (1968) 135.

    Google Scholar 

  56. W. J. Evans, T. J. Deming, J. M. Olofson and J. W. Ziller, Inorg. Chem. 28 (1989) 4027.

    Article  CAS  Google Scholar 

  57. P. S. Gradeff, K. Yunlu, A. Gleizes and J. Galy, Polyhedron 8 (1989) 1001.

    Article  CAS  Google Scholar 

  58. D. L. Rogachev, M. A. Porai-Koshits, V. Ya. Kuznetsov and L. M. Dikareva, J. Struct. Chem. 15 (1974) 397.

    Article  Google Scholar 

  59. K. S. Pitzer, R. N. Roy and L. F. Silvester, J. Am. Chem. Soc. 99 (1977) 4930.

    Article  CAS  Google Scholar 

  60. M. Hansson, Acta Chem. Scand. 27 (1973) 2455.

    Article  CAS  Google Scholar 

  61. M. El Brahimi, J. Durand and L. Cot, Eur. J. Solid State Inorg. Chem. 25 (1988) 185.

    Google Scholar 

  62. G. Lundgren, Arkiv Kemi 2 (1950) 535.

    CAS  Google Scholar 

  63. Idem, ibid. 4 (1952) 421.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briois, V., Williams, C.E., Dexpert, H. et al. Formation of solid particles by hydrolysis of cerium (IV) sulphate. JOURNAL OF MATERIALS SCIENCE 28, 5019–5031 (1993). https://doi.org/10.1007/BF00361172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00361172

Keywords

Navigation