Skip to main content
Log in

Microstructural investigation and indentation response of pressureless-sintered α- and β-SiC

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure and indentation response of pressureless-sintered α- and β-SiC were studied using a high-resolution electron microscope and analytical electron microscopy. The materials were manufactured with boron and carbon as sintering aids. It was found that the overall porosity of the materials was very low but a large number of carbon inclusions were present. X-ray diffraction revealed the fabricated β-SiC material was of the same 3C polytype as the initial starting powder; however, electron microscope observations indicated that the material contained a high density of faulting of the α-forms. High-resolution imaging of grain boundaries in these materials indicated that the boundaries were very clean, and when they contained an amorphous intergranular film it was at most 0.5 to 1 nm thick. The presence of boron was not detected. Deformation due to identation took several forms. Firstly, radial cracks extending from the corners of the indent suffered little hindrance from the matrix microstructure, such that transgranular fracture was the dominant mode. Secondly, the deformation zone beneath the indentations showed copious lattice microcracks with some preferred orientation during crack formation and propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Gugel, in “Ceramics in Advanced Engineering Technologies”, edited by H. Krockel, M. Merz and O. Van Der Biest (Reidel, Dorderecht, 1984) pp. 23–50.

    Google Scholar 

  2. R. A. Alliegro, L. B. Coffin andJ. R. Tinkelpaugh,J. Amer. Ceram. Soc. 39 (1956) 386.

    Google Scholar 

  3. S. Somiya andS. Saito (eds), Proceedings of International Symposium on Factors in Densification and Sintering of Oxide and Non-Oxide Ceramics, (Association of Science Document Information, Tokyo Institute of Technology, Tokyo, Japan, 1979).

    Google Scholar 

  4. W. Bocker, H. Landfermonn andH. Hausner,Powder Met. Int. 11 (1979) 83.

    Google Scholar 

  5. M. Omori andH. Takei,Commun. Amer. Ceram. Soc. 65 (1982) C-92.

    Google Scholar 

  6. S. Prochaska, General Electric Report, 73CRD325 (1973).

  7. S. Prochaska andR. J. Charles,Amer. Ceram. Soc. Bull. 52 (1973) 885.

    Google Scholar 

  8. S. Prochaska andR. M. Scanlan, General Electric Report 74CRD226 (1974).

  9. S. Prochaska, “Special Ceramics 6” (British Ceramic Research Association, Stoke-on-Trent, 1975) p. 171.

    Google Scholar 

  10. E. Gugel andG. Leiner, NATO AGARD Conference Proceedings No. 276, 1979, p. 276.

  11. T. Mizrah, M. Hoffmann andL. Gauckler,Powder Met. Int. 16 (1984) 217.

    Google Scholar 

  12. H. Tanaka, Y. Inomata, K. Hara andH. Hasegawa,J. Mater. Sci. Lett. 4 (1985) 315.

    Google Scholar 

  13. M. J. Slavin andG. D. Quinn,Int. J. High Tech. Ceram. 3 (1987) 47.

    Google Scholar 

  14. G. Orange, H. Tanaka, andG. Fantozzi,Ceram. Int. 13 (1987) 159.

    Google Scholar 

  15. C. A. Johnson, “Fracture Mechanics of Ceramics”, Vol. 3 (Plenum, New York, 1978) p. 99.

    Google Scholar 

  16. A. P. Smith,Amer. Ceram. Soc. Bull. 62 (1983) 886.

    Google Scholar 

  17. D. R. Clarke,J. Amer. Ceram. Soc. 62 (1979) 236.

    Google Scholar 

  18. B. R. Lawn andM. V. Swain,J. Mater. Sci. 10 (1975) 113.

    Google Scholar 

  19. G. Sasaki, K. Hiraga, M. Hirabayashi, K. Niihara andT. Hirai, in Proceedings of 11th International Congress on Electron Microscopy, Kyoto (Japanese Society of Electron Microscopy, Tokyo, Japan, 1986) p. 1679.

    Google Scholar 

  20. H. Tanaka andY. Inomata,J. Jpn Ceram. Soc. 93 (1985) 450.

    Google Scholar 

  21. M. Rühle andG. Petzow, “Materials Science Research”, Vol. 14 (Plenum, New York, 1981) p. 167.

    Google Scholar 

  22. Y. Uemura, Y. Inomata andZ. Inoue,J. Mater. Sci. 16 (1981) 2333.

    Google Scholar 

  23. D. R. Clarke,J. Amer. Ceram. Soc. 70 (1987) 15.

    Google Scholar 

  24. P. T. B. Shaffer,Mater. Res. Bull. 4 (1969) 213.

    Google Scholar 

  25. Y. A. Vodakohov andK. N. Mokhov, in Proceedings of 3rd International Conference on SiC, Miami, Florida, September 1973 edited by R. C. Marshall, J. W. Faust Jr and C. E. Ryan (University of Southern Carolina Press, Columbia, S.C., 1974) p. 508.

    Google Scholar 

  26. T. F. Page, G. R. Sawyer, O. O. Adewoye andJ. J. Wert, Proc. Br. Ceram. Soc. No. 26 (1978) 193.

  27. N. Claussen, B. Mussler andM. V. Swain,J. Amer. Ceram. Soc. 65 (1983) C-14.

    Google Scholar 

  28. K. Niihara andT. Hirai,Bull. Ceram. Soc. Jpn 21 (1986) 598 (in Japanese).

    Google Scholar 

  29. Idem, in Proceedings of Interfaces Conference, Berkeley, December 1986.

  30. C. A. Brookes, J. B. O'Neill andB. A. W. Redfern,Proc. R. Soc. A322 (1971) 73.

    Google Scholar 

  31. P. J. Blau andB. R. Lawn (eds.), “Microindentation Techniques in Materials Science and Engineering”, ASTM Special Technical Publication No. 889 (American Society for Testing and Materials, Philadelphia, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannink, R.H.J., Bando, Y., Tanaka, H. et al. Microstructural investigation and indentation response of pressureless-sintered α- and β-SiC. J Mater Sci 23, 2093–2101 (1988). https://doi.org/10.1007/BF01115774

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01115774

Keywords

Navigation