Skip to main content
Log in

Effects of water and other dielectrics on crack growth

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effects of water and a variety of organic liquids on crack-growth rates in soda-lime-silica glass was investigated. When water is present in organic liquids, it is usually the principal agent that promotes subcritical crack growth in glass. In region I, subcritical crack growth is controlled primarily by the chemical potential of the water in the liquid; whereas in region II, crack growth is controlled by the concentration of water and the viscosity of the solution formed by the water and the organic liquid. In region III, where water does not affect crack growth, the slope of the crack-growth curves can be correlated with the dielectric constant of the liquid. It is suggested that these latter results can be explained by electrostatic interactions between the environment and charges that form during the rupture of Si-O bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Wiederhorn,J. Amer. Ceram. Soc. 59 (1967) 407.

    Google Scholar 

  2. K. Schönert, H. Umhauer andW. Klemm, in Proceedings of the 2nd International Conference on Fracture, Brighten, 1969 (Chapman and Hall, London, 1970) pp. 474–82.

    Google Scholar 

  3. S. W. Freiman,J. Amer. Ceram. Soc. 57 (1974) 350.

    Google Scholar 

  4. H. Richter, “The Physics of Non-Crystalline Solids”, edited by G. H. Frischat (Trans. Tech. Publications, CH-4711 Aedermannsdorf, Switzerland, 1977) pp. 618–24.

  5. C. L. Quackenbush andV. D. Frechette,J. Amer. Ceram. Soc. 61 (1978) 402.

    Google Scholar 

  6. S. M. Wiederhorn, H. Johnson, A. M. Diness andA. H. Heuer,ibid. 57 (1974) 336.

    Google Scholar 

  7. M. Randall andH. P. Weber,J. Phys. Chem. 44 (1940) 917.

    Google Scholar 

  8. H. R. Null, “Phase Equilibrium in Process Design” (Wiley-Interscience, New York, 1970).

    Google Scholar 

  9. S. M. Wiederhorn, in “Fracture Mechanics of Ceramics”, Vol. 2, “Microstructure Materials and Applications,” edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1974) pp. 613–46.

    Google Scholar 

  10. B. J. Pletka, E. R. Fuller Jr andB. G. Koepke, in “Fracture Mechanics Applied to Brittle Materials”, ASTM STP 678, edited by S. W. Freiman, (American Society for Testing and Materials, Philadelphia, 1979) pp. 19–37.

    Google Scholar 

  11. T. A. Michalske andV. D. Frechette,J. Amer. Ceram. Soc. 63 (1980) 603.

    Google Scholar 

  12. S. W. Freiman, D. R. Mulville andP. W. Mast,J. Mater. Sci. 8 (1973) 1527.

    Google Scholar 

  13. S. M. Wiederhorn, E. R. Fuller Jr andR. Thomson,Met. Sci. 14 (1980) 450.

    Google Scholar 

  14. S. Glasstone, K. J. Laidler andH. Eyring, “Theory of Rate Processes” (McGraw-Hill, New York, 1941).

    Google Scholar 

  15. G. Kohnstam, in “Progress in Reaction Kinetics”, edited by G. Porter (Pergamon Press, London, 1970) pp. 355–408.

    Google Scholar 

  16. W. J. Moore, “Physical Chemistry” (Prentice-Hall, Englewood Cliffs, N.J., 1972).

    Google Scholar 

  17. C. E. Inglis,Trans. Inst. Naval Archit. 55 (1913) 219.

    Google Scholar 

  18. R. J. Charles andW. B. Hillig, in the Symposium on Mechanical Strength of Glass and Ways of Improving It, Florence, Italy, 25–29 September, 1961 (Union Scientifique Continentale du Verre, Charleroi, Belgium, 1962) pp. 511–27.

    Google Scholar 

  19. R. E. Mould,J. Amer. Ceram. Soc. 44 (1961) 481.

    Google Scholar 

  20. J. E. Ritter Jr andC. L. Sherburne,J. Amer. Ceram. Soc. 54 (1971) 601.

    Google Scholar 

  21. P. A. Johnson andA. L. Babb,Chem. Rev. 56 (1956) 387.

    Google Scholar 

  22. J. O'M. Bockris andA. K. N. Reddy, “Modern Electrochemistry”, Vol. 1 (Plenum Press, New York, 1970).

    Google Scholar 

  23. S. D. Hamann, in “High Pressure Physics and Chemistry”, Vol. 2, edited by R. S. Bradley (Academic Press, New York, 1963) pp. 163–207.

    Google Scholar 

  24. E. Whalley,Adv. Phys. Org. Chem. 2 (1964) 93.

    Google Scholar 

  25. C. A. Eckert,Ann. Rev. Phys. Chem. 23 (1972) 239.

    Google Scholar 

  26. K. A. Akhmed-Zade, V. V. Baptizmanskii, V. A. Zakrevskii andE. E. Tomashevskii,Sov. Phys. Solid State 14 (1972) 351.

    Google Scholar 

  27. R. E. Benson andJ. E. Castle,J. Phys. Chem. 62 (1958) 840.

    Google Scholar 

  28. W. A. Weyl,Research 3 (1950) 230.

    Google Scholar 

  29. R. S. Bradley, in “High Pressure Physics and Chemistry”, Vol. 2, edited by R. S. Bradley (Academic Press, New York, 1963) pp. 325–37.

    Google Scholar 

  30. J. H. Colwell, “Stable Pressure Transducer,” National Bureau of Standards Report, NBSIR 76-1116, July (1976).

  31. S. M. Wiederhorn andL. H. Bolz,J. Amer. Ceram. Soc. 53 (1970) 543.

    Google Scholar 

  32. S. W. Freiman,ibid. 58 (1975) 339.

    Google Scholar 

  33. Idem, ibid. 58 (1975) 340.

    Google Scholar 

  34. P. C. Paris andG. C. Sih, in “Fracture Toughness Testing and Its Applications”, ASTM STP 381 (American Society for Testing and Materials, Philadelphia, 1965) pp. 80–81.

    Google Scholar 

  35. G. I. Barenblatt,Adv. Appl. Mech. 7 (1962) 55.

    Google Scholar 

  36. G. K. Batchelor, “An Introduction to Fluid Dynamics” (Cambridge University Press, Cambridge, 1967).

    Google Scholar 

  37. I. S. Gradshteyn andI. M. Ryzhik, “Table of Integrals, Series, and Products” (Academic Press, New York, 1980) p. 527 (formula 4.224.11).

    Google Scholar 

  38. J. D. Jackson, “Classical Electrodynamics” (Wiley, New York, 1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiederhorn, S.M., Freiman, S.W., Fuller, E.R. et al. Effects of water and other dielectrics on crack growth. J Mater Sci 17, 3460–3478 (1982). https://doi.org/10.1007/BF00752191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00752191

Keywords

Navigation