Skip to main content
Log in

Creep and strain recovery in hot-pressed silicon nitride

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is observed that creep response in hot-pressed silicon is characterized by two parallel phenomena; one accounts for a persistent non-recoverable plastic deformation and the other for a transient viscoelastic recoverable deformation. The persistent creep component is time-dependent, and apparently follows parabolic time kinetics. It is further observed that creep is characterized by a power law stress exponent of about 4 and an activation energy of 848 kJ mol−1. The viscoelastic recoverable component of strain is found to be independent of the total plastic strain in the material. The recovery rate at any given time is directly proportional to the preceding creep stress and therefore can be considered linear viscoelastic. The creep compliance of the viscoelastic transient is temperature-dependent with an activation energy of about 722 kJ mol−1. It is further observed that the viscoelastic recovery is characterized by a spectrum of retardation times and can be modelled by a series of Kelvin analogue models. Finally, the viscoelastic recovery and the viscoelastic component of subsequent creep appear to be inversely related and apparently obey Boltzman superposition. A model is developed for the creep and recovery behaviour of hot-pressed silicon nitride consistent with all experimental observations and based in relative grain motion accommodated by the fluid grain-boundary glass liquid flow, cavitation and wedge opening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. C. Van Reuth, The advanced Research Projects Agency's Gas Turbine Program, in “Ceramics for high performance applications”, edited by J. J. Burke, A. E. Gorum and R. N. Katz (Brook Hill, Chestnut Hill, Mass., 1974) pp. 1–5.

    Google Scholar 

  2. A. F. Mclean, Ceramics in Small Vehicular Gas Turbines, ibid. pp. 9–36.

    Google Scholar 

  3. R. J. Bratton and A. N. Holden, Ceramics in Gas Turbines for Electric Power Generation, ibid. pp. 37–60.

    Google Scholar 

  4. J. K. Tien, R. M. Arons and R. W. Clark, J. Metals 28 (12) (1976) 26.

    Google Scholar 

  5. R. M. Arons and J. K. Tien, “High Temperature Superalloy — Conservation and the Ceramic Alternatives”, Proceedings of the Conference in Intermaterials Competition and Resource Availability, 82nd AIChE Meeting, August 1976, AIChE Symposium series, 73, 170 (1977) pp. 104–105.

    Google Scholar 

  6. F. F. Lange, Ann. Rev. Mat. Sci. 4 (1974) 365.

    Google Scholar 

  7. I. B. Cutler and W. J. Croft, Powder Met. Int. 6 (1974) 92, 144.

    Google Scholar 

  8. J. W. Edington, D. J. Rowcliffe and J. L. Henshall, ibid. 7 (1975) 82, 136.

    Google Scholar 

  9. S. Wild, P. Grieveson, K. H. Jack and M. J. Latimer, The Role of Magnesia in Hot-Pressed Silicon Nitride, “Special Ceramics”, Vol. 5, edited by P. Popper (British Ceramic Research Ass., Manchester, 1972) pp. 377.

    Google Scholar 

  10. R. F. Coe, R. J. Lumby and M. F. Pawson, Some Properties and Applications of Hot Pressed Silicon Nitride, ibid. pp. 361.

    Google Scholar 

  11. I. Colquhoun, D. P. Thompson, W. I. Wilson, P. Grieveson and K. H. Jack, Proc. Brit. Ceram. Soc. 22 (1973) 181.

    Google Scholar 

  12. R. J. Weston and T. G. Carruthers, ibid. 22 (1973) 197.

    Google Scholar 

  13. G. R. Terwilliger and F. F. Lange, J. Amer. Ceram. Soc. 57 (1974) 25.

    Google Scholar 

  14. K. H. Jack in “Ceramics for high performance applications”, edited by J. J. Burke, A. E. Gorum and R. N. Katz (Brook Hill, Chestnut Hill, Mass., 1974) pp. 265–286.

    Google Scholar 

  15. P. Drew and M. H. Lewis, J. Amer. Ceram. Soc. 9 (1974) 261.

    Google Scholar 

  16. R. Kossowsky, ibid. 8 (1973) 1603.

    Google Scholar 

  17. L. K. V. Lou, T. E. Mitchell and A. H. Heuer, ibid. 61 (1978) 392.

    Google Scholar 

  18. S. Hoffmann and L. J. Gauckler, Powder Met. Int. 6 (1974) 90.

    Google Scholar 

  19. K. Nuttall and D. P. Thompson, J. Mater. Sci. 9 (1974) 850.

    Google Scholar 

  20. D. R. Clarke and G. Thomas, J. Amer. Ceram. Soc. 60 (1977) 491.

    Google Scholar 

  21. A. G. Evans and R. W. Davidge, J. Mater. Sci. 5 (1970) 314.

    Google Scholar 

  22. R. Kossowsky, J. Amer. Ceram. Soc. 56 (1973) 531.

    Google Scholar 

  23. Idem, in “Ceramics for high performance applications” edited by J. J. Burke, A. E. Gorum and R. N. Katz (Brook Hill, Chestnut Hill, Mass., 1974) pp. 347–372.

    Google Scholar 

  24. R. Kossowsky, D. G. Miller and E. S. Diaz, J. Mater. Sci. 10 (1975) 983.

    Google Scholar 

  25. M. S. Seltzer, Ceram. Bull. 56 (1977) 418.

    Google Scholar 

  26. F. F. Lange in “Special Ceramics”, Vol. 5, edited by P. Popper (British Ceramic Assn. Manchester, 1972) pp. 361–382.

    Google Scholar 

  27. S. Purushothaman and J. K. Tien, Acta Met. 26 (1978) 519.

    Google Scholar 

  28. C. A. Anderson, D. P. Wei and R. Kossowsky, in “Deformation of Ceramic Materials”, edited by R. C. Bradt and R. E. Tessler (Plenum Press, New York, 1975) 383.

    Google Scholar 

  29. R. C. Newnham, Proc. Brit. Ceram. Soc. 25 (1975) 281.

    Google Scholar 

  30. R. G. Hoagland, C. W. Marschall and W. H. Duckworth, J. Amer. Ceram. Soc. 56 (1976) 189.

    Google Scholar 

  31. R. Carlson, Norton, Co, Worcester, Mass, Private communication.

  32. S. Ud Din and P. S. Nicholson, J. Mater. Sci. 10 (1975) 1375.

    Google Scholar 

  33. W. Engel, E. Gugel and F. Thümmler, Sci. Ceramics. 7 (1973) 415.

    Google Scholar 

  34. R. M. Arons, Appendix I, Eng. Sci. D. Thesis, Columbia University, 1978.

  35. E. B. Allison, P. Brock and J. White, Trans. Brit. Ceram Soc. 58 (1959) 495.

    Google Scholar 

  36. J. E. Dorn, The spectrum of Activation Energies for creep, in “Creep and recovery” (American Society for Metals, Cleveland, Ohio, 1957) pp. 255–83.

    Google Scholar 

  37. C. O. Hulse and J. A. Pask, J. Amer. Ceram Soc. 49 (1966) 312.

    Google Scholar 

  38. L. J. Trostel, Ceram. Bull. 48 (1969) 601.

    Google Scholar 

  39. W. Engel and F. Thümmler, Ber. Deut. Keram. Ges. 50 (1973) 204.

    Google Scholar 

  40. A. A. Solomon in “Special Ceramics”, Vol. 5, edited by P. Popper (British Ceramic Assn. Manchester, 1972) pp. 313–324.

    Google Scholar 

  41. Idem, J. Amer. Ceram. Soc. 56 (1973) 164.

    Google Scholar 

  42. D. R. Bland, “The Theory of Linear Viscoelasticity” (Pergamon Press, New York, 1960).

    Google Scholar 

  43. R. Morrell and K. H. G. Ashbee, J. Mater. Sci. 8 (1973) 1253.

    Google Scholar 

  44. D. R. Mosher, R. Raj and R. Kossowsky, ibid. 11 (1976) 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arons, R.M., Tien, J.K. Creep and strain recovery in hot-pressed silicon nitride. J Mater Sci 15, 2046–2058 (1980). https://doi.org/10.1007/BF00550631

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550631

Keywords

Navigation