Skip to main content
Log in

δ-FeO(OH) and its solid solutions

Part 1 Preparation and crystal chemistry

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

δ-FeO(OH)-type solid solutions have been synthesized with compositions Fe1−x M x O1−x (OH)1+x ranging up tox=0.10 for M=Ca,x=0.35 for M=Mg or Cd andx=0.40 for M=Zn. The phases are characterized by X-ray diffraction and transmission electron microscope studies. A structural model giving satisfactory intensity agreement is postulated for Fe1−x Zn x O1−x (OH)1+x . In this model, Zn2+ ions are situated in the 0 0 0 octahedral sites of space group D 33d -P¯3ml while the Fe3+ ions are almost equally distributed among both octahedral sites (0 0 0 and 0 0 1/2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Szytula, A. Burewicz, Z. Dimitrijevic, S. Krasnicki, H. Rzany, J. Todorovic, A. Wanic andW. Wolski,Phys. Stat. Sol. 26 (1968) 429.

    Google Scholar 

  2. J. B. Forsyth, I. G. Hedley andC. E. Johnson,J. Phys. C 1 (1968) 179.

    Google Scholar 

  3. A. Szytula, M. Balanda andZ. Dimitrijevic,Phys. Stat. Sol. (a) 3 (1970) 1033.

    Google Scholar 

  4. A. Oles, A. Szytula andA. Wanic,Ibid 41 (1970) 173.

    Google Scholar 

  5. M. Pernet, J. Chenavas, J. C. Joubert, C. Meyer andY. Gros,Solid State Commun. 13 (1973) 1147.

    Google Scholar 

  6. M. Pernet, J. C. Joubert andC. Berthetcolominas,ibid 17 (1975) 1505.

    Google Scholar 

  7. S. Okamoto,J. Amer. Ceram. Soc. 51 (1968) 594.

    Google Scholar 

  8. M. H. Francombe andH. P. Rooksby,Clay Minerals Bull. 4 (1959) 1.

    Google Scholar 

  9. J. D. Bernal, D. R. Dasgupta andA. L. Mackay,ibid 4 (1959) 15.

    Google Scholar 

  10. S. Okamoto, H. Sekizawa andS. I. Okamoto, “Reactivity of Solids”, Proceedings of the 7th International Symposium on the Reactivity of Solids, Bristol (Chapman and Hall, London, 1972) p. 341.

    Google Scholar 

  11. A. W. Simpson,J. Appl. Phys. 33 Suppl. (1962) 1203.

    Google Scholar 

  12. D. A. Powers, PhD Thesis, California Institute of Technology (1975).

  13. W. Feitknecht,Z. Electrochem. 63 (1959) 34.

    Google Scholar 

  14. S. Okamoto,Kogyo Kagaku Zasshi 67 (1964) 1845.

    Google Scholar 

  15. Idem, ibid 67 (1964) 1850.

    Google Scholar 

  16. Idem, ibid 67 (1964) 1855.

    Google Scholar 

  17. J. -C. Petit,Compt. Rend. 252 (1961) 3255.

    Google Scholar 

  18. S. Okamoto,J. Amer. Ceram. Soc. 51 (1968) 113.

    Google Scholar 

  19. W. Feitknecht andG. Keller,Z. Inorg. Chem. 262 (1950) 61.

    Google Scholar 

  20. N. G. Vannerberg,Ark. Kemi 10 (1956) 455.

    Google Scholar 

  21. I. Dézsi, L. Keszthelyi, D. Kulgawczuk, B. Mcinar andN. A. Eissa,Phys. Stat. Sol. 22 (1967) 617.

    Google Scholar 

  22. C. M. Clark, D. K. Smith andG. G. Johnson, “A Fortran IV Program For Calculating X-Ray Powder Diffraction Patterns-Version 5, Pennsylvania state, University (1973).

  23. H. R. Hoekstra, S. Siegel andF. X. Gallagher,Adv. Chem. Series 98 (1971) 39.

    Google Scholar 

  24. G. Bertrand andY. Dusausoy,Compt. Rend. 270C (1970) 612.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, O., Wilson, R. & Krakow, W. δ-FeO(OH) and its solid solutions. J Mater Sci 14, 2929–2936 (1979). https://doi.org/10.1007/BF00611477

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00611477

Keywords

Navigation