Skip to main content
Log in

Structure and properties of Nylon 6 and PET fibres: the effects of crystallite dimensions

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Analyses of mechanical and diffusive properties of fibres are described indicating strong lateral interactions between the microfibrils. These results show that uniaxially oriented polymers must be analysed in terms of a model where the crystallites are imbedded in an “amorphous” matrix. The equations are derived for modulus, strength and coefficient of diffusion in terms of crystallite dimensions, and the results compared with the experimental data. These results contradict the predictions of the microfibrils model where the properties are independent of the crystallite dimensions but depend solely on the degree of crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Peterlin,J. Polymer Sci. C 13 (1971) 133.

    Google Scholar 

  2. K. Sakaoku andA. Peterlin,ibid 9 (1971) 895.

    Google Scholar 

  3. A. Peterlin andK. Sakaoku,J. Appl. Phys. 38 (1967) 4152.

    Google Scholar 

  4. R. J. Samuels,J. Macromol. Sci. -Phys. B4 (1970) 701.

    Google Scholar 

  5. Idem, J. Polymer Sci. A-2 10 (1972) 781.

    Google Scholar 

  6. D. C. Prevorsek, P. J. Harget, R. K. Sharma andA. C. Reimschuessel,J. Macromol. Sci. -Phys. B8 1–2, (1973) 127.

    Google Scholar 

  7. P. Barham andA. Keller,J. Polymer Sci. Letters 13 (1975) 197.

    Google Scholar 

  8. D. C. Prevorsek andA. V. Tobolsky,Textile Res. J. 33 (1963) 795.

    Google Scholar 

  9. A. Peterlin,J. Macromol. Sci. -Phys. B6(4) (1971) 583.

    Google Scholar 

  10. A. C. Reimschuessel andD. C. Prevorsek,J. Polymer Sci. A-2 14 (1976) 485.

    Google Scholar 

  11. D. C. Prevorsek, G. A. Tirpak, P. J. Harget andA. C. Reimschuessel,J. Macromol. Sci. -Phys. B9(4) (1974) 733.

    Google Scholar 

  12. W. J. Dulmage andL. E. Contois,J. Polymer Sci. 28 (1958) 275.

    Google Scholar 

  13. I. Sakurada, I. Ito andK. Nakamae,ibid 15 (1966) 75.

    Google Scholar 

  14. See for example, U.S. Patents 3 387 305, 3 457 609, and 3 499 822.

  15. See, for example, U.S. Patent 3 506 535.

  16. N. V. Hien, S. L. Cooper andJ. A. Koutsky,J. Appl. Polymer Sci. 12 (1968) 2709.

    Google Scholar 

  17. J. P. Bell,ibid 12 (1968) 627.

    Google Scholar 

  18. J. H. Dumbleton, J. P. Bell andT. Murayama,ibid 12 (1968) 2491.

    Google Scholar 

  19. H. Fujita, A. Kishimoto andK. Matsumoto,Trans. Faraday Soc. 56 (1960) 424.

    Google Scholar 

  20. D. C. Prevorsek andR. H. Butler,Intern. J. Polymeric Materials 1 (1972) 251.

    Google Scholar 

  21. R. M. Barrer andJ. Petropulos,Br. J. Appl. Phys. 12 (1961) 691.

    Google Scholar 

  22. J. Crank andG. S. Park, “Diffusion in Polymers” (Academic Press, London, 1968) p. 186.

    Google Scholar 

  23. J. H. Dusenbury, C. N. Wu andC. J. Dansizer,Textile Res. J. 30 (1960) 277.

    Google Scholar 

  24. J. H. Wakelin, E. T. C. Voong, D. J. Montgomery andJ. H. Dusenbury,J. Appl. Phys. 26 (1955) 786.

    Google Scholar 

  25. G. E. R. Lamb andD. C. Prevorsek, unpublished data.

  26. K. H. Meyer andW. Lotmar,Helv. Chim. Acta 19 (1936) 68.

    Google Scholar 

  27. W. J. Lyons,J. Appl. Phys. 29 (1958) 1429.

    Google Scholar 

  28. L. R. G. Treloar,Polymer 1 (1960) 95, 279.

    Google Scholar 

  29. M. A. Jaswon, P. P. Gillis andR. E. Mark,Proc. Roy. Soc. A306 (1968) 389.

    Google Scholar 

  30. P. P. Gillis,J. Polymer Sci. A-2 7 (1969) 783.

    Google Scholar 

  31. M. Takayanagi, K. Imada andT. Kajiyama,ibid 15 (1966) 263.

    Google Scholar 

  32. R. S. Stein andF. H. Norris,ibid 21 (1956) 381.

    Google Scholar 

  33. J. C. Halpin andS. W. Tsai, “Environmental Factors in Composite Materials Design”, AFML TR 67–423.

  34. P. J. Harget,Norelco Report 18 (1971) 25.

    Google Scholar 

  35. M. A. Gezalov, V. S. Kuksenko andA. I. Slusker,Vysokomol. Soldin A12 (1970) 1787.

    Google Scholar 

  36. W. A. Statton, J. L. Koenig andM. Hannon,J. Appl. Phys. 41 (1970) 4290.

    Google Scholar 

  37. G. E. McGraw,J. Polymer Sci. A-2 8 (1970) 1323.

    Google Scholar 

  38. D. C. Prevorsek,ibid 4 (1966) 63.

    Google Scholar 

  39. D. C. Prevorsek andW. J. Lyons,J. Appl. Phys. 35 (1964) 3152.

    Google Scholar 

  40. D. C. Prevorsek andY. D. Kwon,J. Macromol. Sci. -Phys. B12(4) (1976) 473.

    Google Scholar 

  41. A. R. Sack,Proc. Phys. Soc. Lond. 58 (1946) 728.

    Google Scholar 

  42. W. T. Koiter, Problems of Continuum Mechanics, Mushkelishvili Ann. Vol. Soc. Ind., Appl. Mech., 1961, p. 246.

  43. M. Ichikawa, M. Ohashi andY. Yokobori, Reports of the Research Institute for Strength and Fracture of Materials, Tohoku University, Sendai, Japan,1 (1) (1965) 1.

    Google Scholar 

  44. T. J. Willmore,Quart. J. Mech. Appl. Math. 2 (1949) 53.

    Google Scholar 

  45. T. Yokobori, M. Ohashi andM. Ichikawa, Reports of the Research Institute for Strength and Fracture of Materials, Tohuku University, Sendai, Japan,1 (2) (1965) 33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prevorsek, D.C., Kwon, Y.D. & Sharma, R.K. Structure and properties of Nylon 6 and PET fibres: the effects of crystallite dimensions. J Mater Sci 12, 2310–2328 (1977). https://doi.org/10.1007/BF00552253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552253

Keywords

Navigation