Skip to main content
Log in

The chemical polishing of semiconductors

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The review first considers the types of reaction which occur when a semiconductor is chemically polished, taking the dissolution of silicon in nitric acid solutions as an example. Most initial reactions are of the oxidation-reduction type, which can be separated into their anodic and cathodic components. It is shown that electrons and holes can take part in both parts of the reaction, so chemical polishing can interfere with the carrier concentrations close to the surface being polished. In general, the products of the initial reaction are not soluble, so it is necessary to include a component in the polishing solution which will react to give soluble material, which can then be removed from the surface. The factors controlling the dissolution rate are then outlined. It is shown that polishing processes are conveniently divided into two main groups: (1) those for which the rate-limiting process is some aspect of the chemical reaction, and (2) those for which diffusion of atoms to or from the surface controls the rate.

Crystallographic effects are discussed. It is shown that different surface orientations are etched at different rates, and possible reasons for this are outlined. The various types of surface features that can be observed under the microscope after polishing are then described, and their origins are discussed. A review of some of the more extensive investigations is then given, followed by an Appendix containing lists of chemical polishes that have been used for semiconductors of groups IV, III–V and II–VI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. R. Evans, “The corrosion and oxidation of metals” (Edward Arnold, London, 1960) p. 962.

    Google Scholar 

  2. D. R. Turner, J. Electrochem. Soc. 107 (1960) 810.

    Google Scholar 

  3. H. C. Gatos and M. C. Lavine, in “Progress in semiconductors”, Vol. 9, edited by A. F. Gibson and R. E. Burgess (Heywood, London, 1965) p. 1.

    Google Scholar 

  4. R. W. Haisty, J. Electochem. Soc. 108 (1961) 790.

    Google Scholar 

  5. J. H. Braun, ibid 108 (1961) 588.

    Google Scholar 

  6. J. M. Poate, T. M. Buck and B. Schwartz, J. Phys. Chem. Solids 34 (1973) 779.

    Google Scholar 

  7. B. Schwartz, J. Electrochem. Soc. 118 (1971) 657.

    Google Scholar 

  8. D. F. Kyser and M. F. Millea, ibid 111 (1964) 1102.

    Google Scholar 

  9. M. C. Lavine, H. C. Gatos and M. C. Finn, ibid 108 (1961) 974.

    Google Scholar 

  10. B. Tuck and A. J. Baker, J. Mater. Sci. 8 (1973) 1559.

    Google Scholar 

  11. M. B. Abramson and C. V. King, J. Amer. Chem. Soc. 61 (1939) 2290.

    Google Scholar 

  12. B. Schwartz and H. Robbins, J. Electrochem. Soc. 108 (1961) 365.

    Google Scholar 

  13. H. Robbins and B. Schwartz, ibid 107 (1960) 108.

    Google Scholar 

  14. A. F. Bogenschutz, K. Locherer and W. Mussinger, ibid 114 (1967) 970.

    Google Scholar 

  15. S. Iida and K. Ito, ibid 118 (1971) 768.

    Google Scholar 

  16. H. Hartnagel and B. L. Weiss, J. Mater. Sci. 8 (1973) 1061.

    Google Scholar 

  17. V. L. Rideout, J. Electrochem. Soc. 119 (1972) 1778.

    Google Scholar 

  18. A. Reisman and R. Rohr, ibid 111 (1964) 1425.

    Google Scholar 

  19. M. V. Sullivan, D. L. Klein, R. M. Finne, L. A. Pampliano and G. A. Kolb, ibid 110 (1963) 412.

    Google Scholar 

  20. M. V. Sullivan and G. A. Kolb, ibid 110 (1963) 585.

    Google Scholar 

  21. M. V. Sullivan and W. R. Bracht, ibid 114 (1967) 295.

    Google Scholar 

  22. J. L. Richards and A. J. Crocker, J. Appl. Phys. 31 (1960) 611.

    Google Scholar 

  23. J. W. Faust, in “The surface chemistry of metals and semiconductors”, edited by H. C. Gatos (Wiley, New York, 1960) p. 151.

    Google Scholar 

  24. R. C. Ellis, J. Appl. Phys. 28 (1958) 1068.

    Google Scholar 

  25. H. C. Gatos and M. C. Lavine, J. Phys. Chem. Solids 14 (1960) 169.

    Google Scholar 

  26. W. W. Harvey and H. C. Gatos, J. Electrochem. Soc. 105 (1958) 654.

    Google Scholar 

  27. J. G. White and W. C. Roth, J. Appl. Phys. 30 (1959) 946.

    Google Scholar 

  28. E. P. Warekois and P. H. Metzger, ibid 30 (1959) 960.

    Google Scholar 

  29. H. C. Gatos and M. C. Lavine, J. Electrochem. Soc. 107 (1960) 433.

    Google Scholar 

  30. E. P. Warekois, M. C. Lavine, A. N. Mariano and H. C. Gatos, J. Appl. Phys. 33 (1962) 690.

    Google Scholar 

  31. L. Pauling, “Nature of the chemical bond”, 3rd Edn (Cornell University Press, Ithaca, New York, 1960).

    Google Scholar 

  32. B. A. Irving, in “The electrochemistry of semiconductors”, edited by P. J. Holmes (Academic Press, London, 1962) p. 256.

    Google Scholar 

  33. B. W. Batterman, J. Appl. Phys. 28 (1957) 1236.

    Google Scholar 

  34. H. C. Gatos and M. C. Lavine, J. Electrochem. Soc. 107 (1960) 427.

    Google Scholar 

  35. J. D. Venables and R. M. Broudy, J. Appl. Phys. 29 (1958) 1025.

    Google Scholar 

  36. M. S. Abrahams and C. J. Buiocchi, ibid 36 (1965) 2855.

    Google Scholar 

  37. A. R. Patel and K. J. Mathai, J. Phys. D: Appl. Phys. 5 (1972) 390.

    Google Scholar 

  38. B. Tuck and K. Mills, unpublished work.

  39. E. P. Warekois, M. C. Lavine and H. C. Gatos, J. Appl. Phys. 31 (1960) 1302.

    Google Scholar 

  40. H. C. Gatos, M. C. Lavine and E. P. Warekois, J. Electrochem. Soc. 108 (1961) 645.

    Google Scholar 

  41. H. Robbins and B. Schwartz, ibid 106 (1959) 505.

    Google Scholar 

  42. B. A. Irving, ibid 107 (1960) 1020.

    Google Scholar 

  43. D. L. Klein and D. J. D'Stefan, ibid 109 (1962) 37.

    Google Scholar 

  44. M. C. Cretella and H. C. Gatos, ibid 105 (1958) 487.

    Google Scholar 

  45. M. F. Ehman, J. W. Faust and W. B. White, ibid 118 (1971) 1443.

    Google Scholar 

  46. B. Schwartz and H. Robbins, ibid 111 (1964) 196.

    Google Scholar 

  47. T. E. Burgess, ibid 109 (1962) 341.

    Google Scholar 

  48. W. Primak, R. Kampwirth and Y. Dayal, ibid 114 (1967) 88.

    Google Scholar 

  49. J. Bloem and J. C. Van Vessem, ibid 109 (1962) 33.

    Google Scholar 

  50. B. Schwartz, ibid 114 (1967) 285.

    Google Scholar 

  51. R. W. Brander and A. L. Boughey, Brit. J. Appl. Phys. 18 (1967) 905.

    Google Scholar 

  52. C. S. Fuller and H. W. Allison, J. Electrochem. Soc. 109 (1962) 880.

    Google Scholar 

  53. Y. Tarui, Y. Komiya and Y. Harada, ibid 118 (1971) 118.

    Google Scholar 

  54. M. Rubenstein, ibid 113 (1966) 540.

    Google Scholar 

  55. A. Sagar, W. Lehman and J. W. Faust, J. Appl. Phys. 39 (1968) 5336.

    Google Scholar 

  56. Editorial in J. Electrochem. Soc. 112 (1965) 251C.

  57. P. J. Holmes, Ed., “The electrochemistry of semiconductors” (Academic Press, London, 1962) p. 329.

    Google Scholar 

  58. Idem, Proc. Inst. Elec. Engrs. B106 (Suppl. 17) (1959) 861.

    Google Scholar 

  59. W. C. Dash, J. Appl. Phys. 27 (1956) 1193.

    Google Scholar 

  60. Idem, ibid 29 (1958) 705.

    Google Scholar 

  61. C. S. Fuller and J. A. Ditzenberger, ibid 27 (1956) 544.

    Google Scholar 

  62. J. Franks, G. A. Geach and A. T. Churchman, Proc. Phys. Soc. Lond. B68 (1955) 111.

    Google Scholar 

  63. P. J. Holmes and R. C. Newman, Proc. Inst. Elec. Engrs. B106 (Suppl. 15) (1959) 287.

    Google Scholar 

  64. F. L. Vogel, W. G. Pfann, H. E. Corey and E. E. Thomas, Phys. Rev. 90 (1953) 489.

    Google Scholar 

  65. P. Wang, Sylvan. Tech. 11 (1958) 50.

    Google Scholar 

  66. P. R. Camp, J. Electrochem. Soc. 102 (1955) 586.

    Google Scholar 

  67. J. W. Faust, in “Silicon Carbide”, edited by J. R. O'Connor and J. Smiltens (Pergamon, Oxford, 1960) p. 403.

    Google Scholar 

  68. J. M. Harris, H. C. Gatos and A. F. Witt, J. Electrochem. Soc. 116 (1969) 679.

    Google Scholar 

  69. J. G. White and W. C. Roth, J. Appl. Phys. 30 (1959) 946.

    Google Scholar 

  70. M. I. Val'kovskaya and Y. S. Boyarskaya, Sov. Phys.Solid State 8 (1967) 1976.

    Google Scholar 

  71. R. H. Saul, J. Electrochem. Soc. 115 (1968) 1184.

    Google Scholar 

  72. B. Tuck and P. Jay, unpublished work.

  73. J. W. Faust and A. Sagar, J. Appl. Phys. 31 (1960) 331.

    Google Scholar 

  74. B. L. Sharma, Sol-State Electron. 9 (1966) 728.

    Google Scholar 

  75. L. Bernstein, J. Electrochem. Soc. 109 (1962) 270.

    Google Scholar 

  76. H. C. Gatos, M. C. Finn and M. C. Lavine, J. Appl. Phys. 32 (1961) 1174.

    Google Scholar 

  77. S. J. Czyzak and D. C. Reynolds, Bull. Amer. Phys. Soc. 5 (1960) 190.

    Google Scholar 

  78. S. Gezci and J. Woods, J. Mater. Sci. 7 (1972) 603.

    Google Scholar 

  79. J. Woods, Brit. J. Appl. Phys. 11 (1960) 296.

    Google Scholar 

  80. R. Zare, W. R. Cook and L. R. Shiozawa, Nature 189 (1961) 217.

    Google Scholar 

  81. M. Inoue, I. Teramoto and S. Takayanagi, J. Appl. Phys. 33 (1962) 2578.

    Google Scholar 

  82. R. F. Brebrick and W. W. Scanlon, J. Chem. Phys. 27 (1957) 607.

    Google Scholar 

  83. D. B. Lee, J. Appl. Phys. 40 (1969) 4569.

    Google Scholar 

  84. S. M. Hu and D. R. Kerr, J. Electrochem. Soc. 114 (1967) 414.

    Google Scholar 

  85. R. M. Finne and.D. L. Klein, ibid 114 (1967) 965.

    Google Scholar 

  86. T. H. Yeh and A. E. Blakeslee, ibid 110 (1963) 1018.

    Google Scholar 

  87. T. S. Plaskett and A. H. Parsons, ibid 112 (1965) 954.

    Google Scholar 

  88. J. W. Faust, ibid 112 (1965) 114.

    Google Scholar 

  89. T. Iizuka, ibid 118 (1971) 1190.

    Google Scholar 

  90. R. Green, R. H. Glaenzer, A. G. Jordan and A. J. Noreika, J. Appl. Phys. 39 (1968) 2937.

    Google Scholar 

  91. B. Tuck and R. M. Sturt, J. Mater. Sci. 8 (1973) 295.

    Google Scholar 

  92. E. N. Pugh and L. E. Samuels, J. Appl. Phys. 35 (1964) 1966.

    Google Scholar 

  93. E. S. Meieran, ibid 36 (1965) 2544.

    Google Scholar 

  94. C. J. Buiocchi, ibid 38 (1967) 1980.

    Google Scholar 

  95. B. Tuck, Phys. Stat. Sol. 36 (1969) 285.

    Google Scholar 

  96. W. T. Read, Phil. Mag. 45 (1954) 775.

    Google Scholar 

  97. R. L. Bell and A. F. W. Willoughby, J. Mater. Sci. 1 (1966) 219.

    Google Scholar 

  98. S. Schafer, Phys. Stat. Sol. 19 (1967) 297.

    Google Scholar 

  99. H. Alexander and P. Haasen, Solid State Physics 22 (1968) 27.

    Google Scholar 

  100. S. Amelinckx, “The Direct Observation of Dislocations”, Solid State Physics Supplement 6 (1964).

  101. W. C. Dash, J. Appl. Phys. 27 (1956) 1193.

    Google Scholar 

  102. R. Bullough, R. C. Newman, J. Wakefield and J. B. Willis, ibid 31 (1963) 707.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuck, B. The chemical polishing of semiconductors. J Mater Sci 10, 321–339 (1975). https://doi.org/10.1007/BF00540357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540357

Keywords

Navigation