Skip to main content
Log in

Polyhedral clathrate hydrates of a strong base: Phase relations and crystal structures in the system tetramethylammonium hydroxide-water

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

The tetramethylammonium hydroxide-water system has been studied by low-temperature differential thermal analysis and X-ray powder diffraction. The melting diagram was constructed for concentrations between 66.7 and 100 mol% H2O. It shows the existence and stability ranges of as many as eight crystalline hydrate phases:α- andβ-Me4NOH·2H2O (phase transition at −85°C, decomposition atca. 105°C), Me4NOH·4 H2O (melting point 44°C, incongruent),α andβ-Me4NOH·5 H2O (phase transition at 42°C, melting point 68°C, congruent),α- andβ-Me4NOH·7.5 H2O (phase transition at 6°C, melting point 16°C, incongruent), and Me4NOH·10 H2O (melting point −20°C, incongruent). The structures of all these phases, except the already known one ofα-Me4NOH·5 H2O, were determined from single-crystal Mo diffractometer data. The decahydrate and the high-temperatureβ forms of the 7.5-hydrate and the pentahydrate are genuinepolyhedral clathrate hydrates, the first ones reported of a strong base. Their mostly novel three-dimensional anionic host structures, formed by the hydrogen-bonded OH ions and H2O molecules, arefour-connected throughout, in spite of their proton deficiency which is apparently leveled by disorder. Disorder also affects the enclosed cationic Me4N+ guest species. Like the low-temperatureα form of the pentahydrate, that of the 7.5-hydrate has a clathrate-related, but not fully polyhedral structure, some of the oxygen atoms being three-connected only. The tetrahydrate presents the rare case of both a hydrogen bond of the type OH...OH2 and a (deprotonated) water-channel structure. This is fully ordered and apart from that can be derived from the polyhedral one of theβ-pentahydrate just by removing the appropriate number of water molecules from certain positions. The structures ofα- andβ-Me4NOH·2 H2O contain identical one-dimensionalspiro chains [HO(HOH)/42] with the hydroxide protonnot participating in the hydrogen bonding. The Me4N+ ion is ordered in theα and disordered in theβ phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Walker and J. Johnston:J. Chem. Soc., Trans. 2 87, 955 (1905).

    Google Scholar 

  2. K. M. Harmon, G. F. Avci, J. M. Gabriele, and M. J. Jacks:J. Mol. Struct. 159, 255 (1987).

    Google Scholar 

  3. E. I. Latysheva, E. N. Cherkasov, S. A. Tokareva, N. G. Velikova, and I. I. Vol'nov:Neorg. Pereskisnye Soedin., Dokl. Vses. Soveshch. 117, (1975);C. A. 83, 212090t (1975).

    Google Scholar 

  4. S. J. Anhouse and M. C. Tobin:Spectrochim. Acta 28A, 2141 (1972).

    Google Scholar 

  5. S. Sato, R. Ikeda, and D. Nakamura:J. Chem. Soc., Faraday Trans. 2 82, 2053 (1986).

    Google Scholar 

  6. C. I. Ratcliffe and J. A. Ripmeester:Can. J. Chem. 64, 1348 (1986).

    Google Scholar 

  7. R. K. McMullan, T. C. W. Mak, and G. A. Jeffrey:J. Chem. Phys. 44, 2338 (1966).

    Google Scholar 

  8. D. Brodalla: Dissertation, Universität Düsseldorf (1983).

  9. D. Brodalla, D. Mootz, R. Boese, and W. Osswald:J. Appl. Crystallogr. 18, 316 (1985).

    Google Scholar 

  10. G. M. Sheldrick: Structure Determination System-Revision 4.1, Nicolet XRD Corporation, Madison WI (1983).

    Google Scholar 

  11. F. Liebau, H. Gies, R. P. Gunawardane and B. Marler:Zeolites 6, 373 (1986).

    Google Scholar 

  12. G. A. Jeffrey: ‘Hydrate Inclusion Compounds’Inclusion Compounds, v. 1, Eds. J. L. Atwood, J. E. D. Davies, D. D. MacNicol, Academic Press, London, 1984, pp. 135–185.

    Google Scholar 

  13. S. F. Solodovnikov, T. M. Polyanskaya, V. I. Alekseev, L. S. Aladko, Y. A. Dyadin, and V. V. Bakakin:Kristallografiya 27, 247 (1982);Sov. Phys. Crystallogr. 27, 151 (1982).

    Google Scholar 

  14. D. W. Davidson and S. K. Garg:Can. J. Chem. 50, 3515 (1972). (b) D. W. Davidson, L. D. Calvert, F. Lee, and J. A. Ripmeester:Inorg. Chem. 20, 2013 (1981). (c) M. Wiebcke and D. Mootz:Z. Kristallogr. 177, 291 (1986).

    Google Scholar 

  15. D. W. Davidson and J. A. Ripmeester: ‘NMR, NQR and dielectric properties of clathrates’Inclusion Compounds, v. 3, Eds. J. L. Atwood, J. E. D. Davies, and D. D. MacNicol, Academic Press, London, 1984, pp. 69–128.

    Google Scholar 

  16. S. W. Peterson and H. A. Levy:Acta Crystallogr. 10, 70 (1957).

    Google Scholar 

  17. G. T. Koide and E. L. Carstensen:J. Phys. Chem. 76, 1999 (1972).

    Google Scholar 

  18. C. I. Ratcliffe, S. K. Garg, and D. W. Davidson:J. Inclusion Phenom.,8, 159 (1990) (this issue).

    Google Scholar 

  19. R. Seidel: Dissertation, Universität Düsseldorf (1988).

  20. R. Seidel and D. Mootz:Z. Kristallogr. 182, 247 (1988).

    Google Scholar 

  21. H. Bärnighausen:MATCH (Commun. Math. Chem.)9, 139 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.

Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82076 (66 pages).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mootz, D., Seidel, R. Polyhedral clathrate hydrates of a strong base: Phase relations and crystal structures in the system tetramethylammonium hydroxide-water. J Incl Phenom Macrocycl Chem 8, 139–157 (1990). https://doi.org/10.1007/BF01131293

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01131293

Key words

Navigation