Skip to main content
Log in

Substituent Effects on the Driving Force for Inclusion Complexation of α- and β-Cyclodextrin with Monosubstituted Benzene Derivatives

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

The association constant values, Ka, for the inclusion of α- and β-CD with monosubstituted benzene derivatives were determined by means of UV-vis and fluorescence spectroscopy. The stability of the complexes is influenced by the properties of the substituents of the guest compounds. Regression analysis was used to create a set of inclusion models with the experimental association constant ln Ka and the corresponding substituent molar refraction Rm, hydrophobic constant π and Hammett σ constant of the benzene derivatives. The ln Ka value mainly correlated with Rm for α-CD and with both Rm and π for β-CD complexes. The association constants predicted by the models are in good agreement with the experimentally determined data. This suggests that the inclusion complexation of benzene derivatives with α-CD is predominantly driven by van der Waals force and with β-CD mainly by van der Waals force and hydrophobic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Bender and M. Komiyama: Cyclodextrin Chemistry, Springer Verlag, Berlin (1978).

    Google Scholar 

  2. J. Szejtli: Cyclodextrin Technology, Kluwer Academic Publishers, Dordrecht (1988).

    Google Scholar 

  3. H. Dugas: Bioorganic Chemistry: A Chemical Approach to Enzyme Action (3rd Ed.), Springer Verlag, New York (1995).

    Google Scholar 

  4. D. Sybilska and E. Smolkova-Keulemansova: in J.L. Atwood, J.E.D. Davies, and D.D. MacNicol (Eds.), Inclusion Compounds, Academic Press, London, Vol. 3, Ch. 6 (1984).

    Google Scholar 

  5. V. Schurig and H.-P. Nowotny: Angew. Chem. Int. Ed. Engl. 29, 939 (1990).

    Google Scholar 

  6. T. Cserhati and G. Oros: J. Incl. Phenom. 18, 265 (1994).

    Google Scholar 

  7. F. Hirayama, M. Yamanaka, T. Horikawa, and K. Uekema: Chem. Pharm. Bull. 43, 130 (1985).

    Google Scholar 

  8. (a) R. Breslow, S.D. Dong, Y. Webb, and R. Xu: J. Am. Chem. Soc. 118, 118, 6588 (1996). (b) R. Breslow and C. Schmuck: J. Am. Chem. Soc. 118, 6601 (1996).

  9. O. Tee, C. Mazza, and X. Du: J. Org. Chem. 55, 3603 (1990).

    Google Scholar 

  10. (a) I. Tabushi: Acc. Chem. Res. 15, 66 (1982); Tetrahedron 40, 269 (1984). (b) I. Tabushi and Y. Kuroba: J. Am. Chem Soc. 106, 4580 (1984).

  11. (a) V.T. D'Souza, X.L. Lu, R.D. Ginger, and M.L. Bender: Proc. Natl. Acad. Sci. USA 84, 673 (1987). (b) V.T. D'Souza, and M.L. Bender: Acc. Chem. Res. 20, 146 (1987).

  12. E.V. Akkaya and A.W. Czarnik: J. Am. Chem. Soc. 110, 8553 (1988).

    Google Scholar 

  13. (a) T. Ikeda, R. Kojin, C.-J, Yoon, H. Ikeda, M. Iijima, K. Hottori, and F. Toda: J. Incl. Phenom. 2, 669 (1984). (b) T. Ikeda, T. Kojin, C.-J. Yoon, K. Ikeda, M. Iijima, and F. Toda: ibid. 5, 93 (1987). (c) H. Ikeda, R. Kojin, C.-J. Yoon, T. Ikeda, and F. Toda: ibid. 7, 117 (1989).

  14. (a) Y. Inoue: Annual Reports on NMR Spectroscopy 59 (1993). (b) K. Kano, Y. Tawiya, and S. Hashimoto: J. Incl. Phenom. 3, 287 (1992).

  15. D.M. Davies and J.R. Savage: J. Chem. Res. (M), 0663 (1993); J. Chem. Res. (S), 94 (1993). D.M. Davies and M.E. Deary: J. Chem. Soc., Perkin Trans 2, 1287 (1995).

  16. K.A. Connors, S.-F. Lin, and A.B. Wong: J. Pharm. Sci. 71, 217 (1982). K.A. Connors and D.D. Peadergast: J. Am. Chem. Soc. 106, 7607 (1984).

    Google Scholar 

  17. J.H. Park and T.W. Nah: J. Chem. Soc., Perkin Trans 2, 1359 (1994).

  18. Q.-X. Guo, Z.-Z. Li, T. Ren, X.-Q. Zhu, and Y.-C. Liu: J. Incl. Phenom. 17, 149 (1994).

    Google Scholar 

  19. (a) Q.-X. Guo, S.-H. Luo, H. Wang, M.-S. Zhang, and Y.-C. Liu: J. Chem. Res. (S) 38 (1996). (b) Q.-X. Guo, S.-H. Luo, H. Wang, M.-S. Zhang, and Y.-C. Liu: Chin. Chem. Lett. 7, 285 (1996). (c) Q.-X. Guo, S.-H. Luo, X.-Q. Zheng, and Y.-C. Liu: Chin. Chem. Lett. 7, 767 (1996).

  20. E.E. Tucker and S.D. Cristian: J. Am. Chem. Soc. 106, 1942 (1984).

    Google Scholar 

  21. I. Sanema and Y. Akamine: Bull. Chem. Soc. Jpn. 60, 2059 (1987).

    Google Scholar 

  22. M. Hoshino and M. Imamura: J. Phys. Chem. 85, 1820 (1981).

    Google Scholar 

  23. G.L. Bertrand: J. Phys. Chem. 93, 6863 (1989).

    Google Scholar 

  24. A.B. Wang: J. Pharm. Sci. 72, 388 (1983).

    Google Scholar 

  25. Y.-C. Jean and H.J. Ache: J. Phys. Chem. 81, 2093 (1977).

    Google Scholar 

  26. T. Takuma, T. Deguchi, and I. Sanemasa: Bull. Chem. Soc. Jpn. 63, 1246 (1990).

    Google Scholar 

  27. R.L. van Etten, J.F. Sebastian, G.A. Clowes, and M.L. Bender: J. Am. Chem. Soc. 89, 3242 (1967).

    Google Scholar 

  28. S. Li and W.C. Purdy: Chem. Rev. 92, 1457 (1992).

    Google Scholar 

  29. A.D. Buckingham: Quart. Rev. Chem. Soc. 13, 183 (1959).

    Google Scholar 

  30. F. London: Z. Phys. 63, 245 (1930).

    Google Scholar 

  31. A. Bondi: J. Phys. Chem. 68, 441 (1964).

    Google Scholar 

  32. Y. Matsui and K. Mochida: Bull. Chem. Soc. Jpn. 52, 2808 (1979).

    Google Scholar 

  33. M. Delaage in M. Delaage (ed.), Molecular Recognition Mechanisms, Ch. 1, VCH Publishers, New York (1991).

    Google Scholar 

  34. G. Nemethy: Angew. Chem. Int. Ed. Engl. 6, 195 (1967).

    Google Scholar 

  35. K. Kiehs, C. Hansch, and L. Moore: Biochemistry 5, 2602 (1966).

    Google Scholar 

  36. F. Helmer, K. Kiehs, and C. Hansch: Biochemistry 7, 2858 (1968).

    Google Scholar 

  37. A. Leo, C. Hansch, and D. Elkins: Chem. Rev. 71, 525 (1971).

    Google Scholar 

  38. C. Hansch, A. Leo, and D. Nikaitani: J. Org. Chem. 37, 3090 (1972).

    Google Scholar 

  39. C. Hansch, A. Leo, S.H. Unger, K.H. Kim, D. Nikaitani, and E.J. Lien: J. Med. Chem. 16, 1207 (1973).

    Google Scholar 

  40. R.N. Smith, C. Hansch, and M.M. Ames: J. Pharm. Sci. 64, 599 (1975).

    Google Scholar 

  41. C. Silipo and C. Hansch: J. Am. Chem. Soc. 97, 6849 (1975).

    Google Scholar 

  42. J.T. Chou and P.C. Jurs: J. Chem. Inf. Comput. Sci. 19, 172 (1979).

    Google Scholar 

  43. N. Yoshida, A. Seiyama, and M. Fujimoto: J. Incl. Phenom. 2, 573 (1984).

    Google Scholar 

  44. G. Wenz: Angew. Chem. Int. Ed. Engl. 33, 803 (1994).

    Google Scholar 

  45. M. Kitagawa, H. Hoshi, M. Sakurai, Y. Inoue, and R. Chujo: Carbohydr. Res. 163, c1 (1987).

    Google Scholar 

  46. M. Sakurai, M. Kitagawa, Y. Inoue, and R. Chujo: Carbohydr. Res. 198, 181 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, QX., Luo, SH. & Liu, YC. Substituent Effects on the Driving Force for Inclusion Complexation of α- and β-Cyclodextrin with Monosubstituted Benzene Derivatives. Journal of Inclusion Phenomena 30, 173–182 (1998). https://doi.org/10.1023/A:1007985107256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007985107256

Navigation