Skip to main content
Log in

Inclusion compounds of thiourea and peralkylated ammonium salts. Part II. Hydrogen-bonded host lattices built of thiourea and cyclic dimeric bicarbonate moieties

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

New inclusion complexes R4N+HCO 3 ·x(NH2)2CS·yH2O (1, R=C2H5,x=1,y=1;2, R=n−C3H7,x=2,y=0;3, R=n−C4H9,x=3,y=0) have been prepared and characterized by X-ray crystallography. Crystal data, MoK α radiation:1, space groupPbca,Z=8,a=8.839(2),b=14.930(3),c=24.852(5) Å, andR F=0.063 for 1419 observed data;2, space groupC2221,Z=8,a=8.521(3),b=16.941(4),c=32.022(7) Å,R F=0.054 for 1689 observed data;3, space group\(P\bar 1\),Z=2,a=9.553(2),b=12.313(3),c=14.228(4) Å, α=90.44(2),β=103.11(2), γ=110.12(2)°,R F=0.044 for 3925 observed data. In the crystal structure of1, the thiourea molecules form hydrogen-bonded zigzag ribbons running parallel to thea axis, and the cyclic dimeric bicarbonate moieties (HCO 3 )2 together with water molecules behave likewise. A puckered layer is formed by further lateral hydrogen bonding between these two types of ribbons, and the (C2H5)4N+ cations occupy the space between adjacent layers. In the crystal structure of2, the thiourea ribbons are cross-linked orthogonally by (HCO 3 )2 unitsvia N−H...O hydrogen bonds to form a composite double layer. Half of the cations are enclosed within and the other half sandwiched between these double layers. In the crystal structure of3, the thiourea molecules form puckered double ribbons running in the [110] direction. The host framework is constructed by cross-linking the double ribbons with bridging bicarbonate dimers, yielding two channel systems aligned parallel to [100] and [111] that accommodate the cationic guests. The structural relationship between the present complexes and the classical thiourea channel adducts is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Takemota and N. Sonoda: in J. L. Atwood, J. E. D. Davies and D. D. MacNicol (Eds.),Inclusion Compounds, Vol. 2, pp. 47–67. Academic Press, London (1984).

    Google Scholar 

  2. L.C. Fetterly: in L. Mandelcorn (Ed.),Non-stoichiometric Compounds, pp. 491–567, Academic Press, New York (1964).

    Google Scholar 

  3. K.D.M. Harris and J.M. Thomas:J. Chem. Soc., Faraday Trans. 86, 2985 (1990); K.D.M. Harris, S.P. Smart, and M.D. Hollingsworth:ibid. 87, 3423 (1991).

    Google Scholar 

  4. K.D.M. Harris:Chem. Brit. 29, 132 (1993).

    Google Scholar 

  5. H.-U. Lenne:Acta Crystallogr. 7, 1 (1954).

    Google Scholar 

  6. E. Hough and D.G. Nicholson:J. Chem. Soc., Dalton Trans. 15 (1978).

  7. K.D.M. Harris and J.M. Thomas:J. Chem. Soc., Faraday Trans. 86, 1095 (1990).

    Google Scholar 

  8. T.C.W. Mak and G.D. Zhou:Crystallography in Modern Chemistry, p. 180, Wiley, New York (1992).

    Google Scholar 

  9. P.A. Schofield, K.D.M. Harris, I.J. Shannon, and A.J.O. Rennie:J. Chem. Soc., Chem. Commun. 1293 (1993).

  10. A.G. Anderson, J.C. Calabrese, W. Tam, and I.D. Williams:Chem. Phys. Lett. 134, 392 (1987).

    Google Scholar 

  11. A.E. Tonelli:Comput. Polym. Sci. 2(2–3), 80 (1992).

    Google Scholar 

  12. R.K. McMullan, T.C.W. Mak, and G.A. Jeffrey:J. Chem. Phys. 44, 2338 (1966).

    Google Scholar 

  13. W.J. McLean and G.A. Jeffrey:J. Chem. Phys. 47, 414 (1967).

    Google Scholar 

  14. W.J. McLean and G.A. Jeffrey:J. Chem. Phys. 49, 4556 (1968).

    Google Scholar 

  15. T.C.W. Mak:J. Incl. Phenom. 4, 273 (1986).

    Google Scholar 

  16. W. Michael, F. Clemens C., F. Juergen, and E. Guenter:Z. Naturforsch., B:Chem. 48, 978 (1993).

    Google Scholar 

  17. T.C.W. Mak:J. Incl. Phenom. 8, 199 (1990). Part I of this series.

    Google Scholar 

  18. R.T. Morrison and R.N. Boyd:Organic Chemistry, 6th edit., p. 854, Prentice-Hall, London (1992).

    Google Scholar 

  19. R.A. Sparks: in F.R. Ahmed (Ed.),Crystallographic Computing Techniques, p. 452. Munksgaard, Copenhagen (1976).

    Google Scholar 

  20. G. Kopfmann and R. Huber:Acta Crystallogr., Sect. A 24, 348 (1968).

    Google Scholar 

  21. G.M. Sheldrick: in D. Sayre (Ed.),Computational Crystallography, Oxford University Press, New York, pp. 506–514 (1982).

    Google Scholar 

  22. International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham (1974) (Distrib.: Kluwer Academic Publishers, Dordrecht), pp. 55, 99, 149.

  23. T.C.W. Mak:J. Incl. Phenom. 6, 473 (1988).

    Google Scholar 

  24. S. Swaminathan, B.M. Craven, and R.K. McMullan:Acta Crystallogr., Sect. B 40, 300 (1984).

    Google Scholar 

  25. R. Bishop and I.G. Dance:Top. Curr. Chem. 149, 137 (1988).

    Google Scholar 

  26. V. Philip and D. Jerry:Acta Crystallogr. 5, 530 (1952).

    Google Scholar 

  27. R.L. Sass and R.F. Scheuerman:Acta Crystallogr. 15, 77 (1962).

    Google Scholar 

  28. I. Nitta, Y. Tomiie, and C.H. Koo:Acta Crystallogr. 5, 292 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supplementary Data relating to this article have been deposited with the British Library as Supplementary Publication No. SUP 82178 (44 pages).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Mak, T.C.W. Inclusion compounds of thiourea and peralkylated ammonium salts. Part II. Hydrogen-bonded host lattices built of thiourea and cyclic dimeric bicarbonate moieties. J Incl Phenom Macrocycl Chem 20, 73–88 (1994). https://doi.org/10.1007/BF00707613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00707613

Key words

Navigation