Skip to main content
Log in

Selective assembly of cyclodextrins on poly(ethylene oxide)–poly(propylene oxide) block copolymers

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

This paper presents a computational study on the formation of a molecular necklace formed by specific threading of cyclodextrins (CDs) on block copolymers. Structural as well as energetic principles for the selective complexation of α- and β-cyclodextrin with poly(ethylene oxide)–poly(propylene oxide) block copolymers (PEO–PPO) are elucidated considering a diblock copolymer of equimolecular composition (PEO)4–(PPO)4 as guest. A non-statistical distribution of CDs, i.e. α-CDs primarily located on the PEO chain and β-CDs on PPO blocks of the polymer, is based on a variety of structural features and energetic preferences considering both potential as well as solvation energies. This selectivity becomes already obvious considering 1:1 complexes between PEO and PPO monomers and the two CDs, but is increasingly evident when calculating higher order ensembles. Besides the host–guest interaction, docking between CDs themselves is an important, also non-statistical, prerequisite for the self-assembly of highly ordered tubes. The formation of intermolecular hydrogen bonds between adjacent CDs in a tubular aggregate gives an important contribution to the overall stability of the molecular necklace. The net effect, based on the preferential interaction between host and guest as well as between the host molecules themselves, results in the formation of a stable, highly ordered macromolecular, multicomponent aggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mayer, B., Köhler, G. and Rasmussen, S., Phys. Rev., E55 (1997) 4489.

    Google Scholar 

  2. Schnur, J.M., Science, 262 (1993) 1669.

    Google Scholar 

  3. Ghadiri, M.R., Granja, J.R., Milligan, R.A., McRee, D.E. and Khazanovich, N., Nature, 366 (1993) 324.

    Google Scholar 

  4. Stupp, S.I., LeBonheur, V., Walker, K., Li, L.S., Huggins, K.E., Keser, M. and Amstutz, A., Science, 276 (1997) 384.

    Google Scholar 

  5. Oberholzer, T., Wick, R., Luisi, P.L. and Biebricher, Ch.K., Biochem. Biophys. Res. Commun., 207 (1995) 250.

    Google Scholar 

  6. Sleytr, U.B., Pum, D. and Sara, M., Adv. Biophys., 34 (1997) 71.

    Google Scholar 

  7. Allara, D.L., In Koch, H.C., Jelinski, L.W. and Graighead, H.C. (Eds.) Nanofabrication and Biosystems, Cambridge University Press, Cambridge, 1996, p. 180.

    Google Scholar 

  8. Szejtli, J. and Szente, L. (Eds.) Proceedings of the Eighth International Symposium on Cyclodextrins, Kluwer Academic Publishers, Dordrecht, 1996, pp. 161–281, and references therein.

    Google Scholar 

  9. Chacko, K.K. and Saenger, W., J. Am. Chem. Soc., 103 (1981) 1708.

    Google Scholar 

  10. Baetzel, C., Saenger, W., Hingerty, B.E. and Brown, G.M., J. Am. Chem. Soc., 106 (1984) 7545.

    Google Scholar 

  11. Park, H.-R., Mayer, B., Wolschann, P. and Köhler, G., J. Phys. Chem., 98 (1994) 6158.

    Google Scholar 

  12. Bortolus, P. and Monti, S., In Neckers, D.C., Volman, D.H. and von Bünau, G. (Eds.) Advances in Photochemistry, Vol. 21, Wiley, New York, NY, 1996, p. 1, and references therein.

    Google Scholar 

  13. Klein, Ch.Th., Köhler, G., Mayer, B., Mraz, K., Reiter, S., Viernstein, H. and Wolschann, P., J. Incl. Phenom. Mol. Rec. Chem., 22 (1995) 15.

    Google Scholar 

  14. Stella, V.J. and Rajewski, R.A., Pharm. Res., 14 (1997) 556.

    Google Scholar 

  15. Grabner, G., Monti, S., Marconi, G., Mayer, B., Klein, Ch.Th. and Köhler, G., J. Phys. Chem., 100 (1996) 20068.

    Google Scholar 

  16. Marconi, G., Mayer, B., Klein, Ch.Th. and Köhler, G., Chem. Phys. Lett., 260 (1996) 589.

    Google Scholar 

  17. De Feyter, S., Van Stam, J., Imans, F., Viaene, L., De Schryver, F.C. and Evans, C.H., Chem. Phys. Lett., 277 (1997) 44.

    Google Scholar 

  18. Harada, A., Li, J. and Kamachi, M., Nature, 356 (1992) 325.

    Google Scholar 

  19. Harada, A., Li, J. and Kamachi, M., Nature, 370 (1994) 126.

    Google Scholar 

  20. Lipkowitz, K.B., Chem. Rev., 98 (1998) 1829.

    Google Scholar 

  21. Panova, I.G., Gerasimov, V.I., Grochovskaya, T.E. and Topchieva, I.N., Doklady Chem., 347 (1996) 58.

    Google Scholar 

  22. Topchieva, I.N., Gerasimov, V.I., Panova, I.G., Karezin, K.I. and Efremova, N.V., Polymer Sci., 40 (1998) 171.

    Google Scholar 

  23. Allinger, N.L., Yuh, Y.H. and Lii, J.-H., J. Am. Chem. Soc., 111 (1989) 8551.

    Google Scholar 

  24. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.B. and Teller, A.H., J. Phys. Chem., 21 (1953) 1087.

    Google Scholar 

  25. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., Science, 220 (1983) 671.

    Google Scholar 

  26. Mayer, B., Program Package MultiMize (1997); MultiMize provides a dynamic Monte Carlo framework including various force fields (AMBER4.0, ECEPP/3, GROMOS-87, MM3-92), routines to calculate solvation energies based on a continuum approximation (see the 'Method of calculation' section), and routines to calculate the induced circular dichroism of host– guest systems (see Reference 27) as well as of peptides.

  27. Mayer, B., Klein, Ch.Th., Marconi, G. and Köhler, G., J. Incl. Phenom. Mol. Rec. Chem., 29 (1997) 79.

    Google Scholar 

  28. Klein, Ch.Th., Mayer, B., Köhler, G. and Wolschann, P., J. Mol. Struct. (THEOCHEM), 370 (1996) 33.

    Google Scholar 

  29. Wesson, L. and Eisenberg, D., Protein Sci., 1 (1992) 227.

    Google Scholar 

  30. Mayer, B. and Köhler, G., J. Mol. Struct. (THEOCHEM), 363 (1996) 217.

    Google Scholar 

  31. Rekharsky, M.V. and Inoue, Y., Chem. Rev., 98 (1998) 1875.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, B., Klein, C., Topchieva, I. et al. Selective assembly of cyclodextrins on poly(ethylene oxide)–poly(propylene oxide) block copolymers. J Comput Aided Mol Des 13, 373–383 (1999). https://doi.org/10.1023/A:1008095501870

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008095501870

Navigation