Skip to main content
Log in

Heuristic lipophilicity potential for computer-aided rational drug design

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In this contribution we suggest a heuristic molecular lipophilicitypotential (HMLP), which is a structure-based technique requiring noempirical indices of atomic lipophilicity. The input data used in thisapproach are molecular geometries and molecular surfaces. The HMLP is amodified electrostatic potential, combined with the averaged influences fromthe molecular environment. Quantum mechanics is used to calculate theelectron density function ρ(r) and the electrostatic potential V(r), andfrom this information a lipophilicity potential L(r) is generated. The HMLPis a unified lipophilicity and hydrophilicity potential. The interactions ofdipole and multipole moments, hydrogen bonds, and charged atoms in amolecule are included in the hydrophilic interactions in this model. TheHMLP is used to study hydrogen bonds and water–octanol partitioncoefficients in several examples. The calculated results show that the HMLPgives qualitatively and quantitatively correct, as well as chemicallyreasonable, results in cases where comparisons are available. Thesecomparisons indicate that the HMLP has advantages over the empiricallipophilicity potential in many aspects. The HMLP is a three-dimensional andeasily visualizable representation of molecular lipophilicity, suggested asa potential tool in computer-aided three-dimensional drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hansch, C., In Ariens, E.J. (Ed.) Drug Design, Vol. 1, Academic Press, New York, NY, U.S.A., 1971, p. 271.

    Google Scholar 

  2. Loew, G.H., Villar, H.O. and Alkorta, I., Pharm. Res., 10 (1993) 475.

    Google Scholar 

  3. Klebe, G., Abraham, U. and Mietzner, T., J. Med. Chem., 37 (1994) 4130.

    Google Scholar 

  4. Jain, A.N., Koile, K. and Chapman, D., J. Med. Chem., 37 (1994) 2315.

    Google Scholar 

  5. Kellogg, G.E. and Abraham, D.J., J. Mol. Graph., 10 (1992) 212.

    Google Scholar 

  6. Forsman, J. and Jönsson, B., J. Chem. Phys., 101 (1994) 5116.

    Google Scholar 

  7. Guillot, B., Guissani, Y. and Bratos, S., J. Chem. Phys., 95 (1991) 3643.

    Google Scholar 

  8. Tanaka, H. and Nakanishi, K., J. Chem. Phys., 95 (1991) 3719.

    Google Scholar 

  9. Haile, J.M., Molecular Dynamics Simulation, Wiley, New York, NY, U.S.A, 1992.

    Google Scholar 

  10. Smith, D.E. and Haymet, A.D.J., J. Chem. Phys., 98 (1992) 6444.

    Google Scholar 

  11. Miertus, S. and Tomasi, J., Chem. Phys., 65 (1982) 239.

    Google Scholar 

  12. Miertus, S. and Moravek, R., Coll. Czech-Slov. Chem. Commun., 55 (1990) 2430.

    Google Scholar 

  13. Wong, M.W., Frisch, M.J. and Wiberg, K.B., J. Am. Chem. Soc., 113 (1991) 4776.

    Google Scholar 

  14. Bonaccorsi, R., Floris, F., Palla, P. and Tomasi, J., Thermochim. Acta, 162 (1990) 213.

    Google Scholar 

  15. Cramer, C.J. and Truhlar, D.G., J. Comput. Chem., 13 (1992) 1089.

    Google Scholar 

  16. Field, M.J., Bash, P.A. and Karplus, M., J. Comput. Chem., 11 (1990) 700.

    Google Scholar 

  17. Leo, A., Hansch, C. and Elkins, D., Chem. Rev., 71 (1971) 525.

    Google Scholar 

  18. Eisenberg, D., Weiss, R.M. and Terwilliger, T.C., Nature, 299 (1982) 371.

    Google Scholar 

  19. Eisenberg, D. and McLachlan, A.D., Nature, 319 (1986) 199.

    Google Scholar 

  20. Heiden, W., Moeckel, G. and Brickmann, J., J. Comput.-Aided Mol. Design, 7 (1993) 503.

    Google Scholar 

  21. Náray-Szabó, G. and Nagy, P., Int. J. Quantum Chem., 35 (1989) 215.

    Google Scholar 

  22. Náray-Szabó, G., J. Mol. Graph., 7 (1989) 76.

    Google Scholar 

  23. Náray-Szabó, G., J. Mol. Struct. (THEOCHEM), 138 (1986) 197.

    Google Scholar 

  24. Croizet, F., Langlois, M.H., Dubost, J.P., Braquet, P., Audry, E., Dallet, Ph. and Colleter, J.C., J. Mol. Graph., 8 (1990) 153.

    Google Scholar 

  25. Furet, P., Sele, A. and Cohen, N.C., J. Mol. Graph., 6 (1988) 182.

    Google Scholar 

  26. Ghose, A.K. and Crippen, G.M., J. Comput. Chem., 7 (1986) 565.

    Google Scholar 

  27. Viswanadhan, V.N., Ghose, A.K., Revankar, G.R. and Robins, R.K., J. Chem. Inf. Comput. Sci., 29 (1989) 163.

    Google Scholar 

  28. Audry, E., Dubost, J.-P., Colleter, J.-C. and Dallet, P., Eur. J. Med. Chem.-Chim. Thér., 21 (1986) 71.

    Google Scholar 

  29. Audry, E., Dubost, J.-P., Dallet, P., Langlois, M.H. and Colleter, J.-C., Eur. J. Med. Chem.-Chim. Thér., 24 (1989) 155.

    Google Scholar 

  30. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    Google Scholar 

  31. Kantola, A., Villar, H.O. and Loew, G.H., J. Comput. Chem., 12 (1991) 681.

    Google Scholar 

  32. Bodor, N., Gabanyi, Z. and Wong, C.K., J. Am. Chem. Soc., 111 (1989) 3783.

    Google Scholar 

  33. Politzer, P. and Truhlar, D.G. (Eds.) Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum, New York, NY, U.S.A., 1981.

    Google Scholar 

  34. Politzer, P. and Murray, J.S., In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews in Computational Chemistry, VCH, New York, NY, U.S.A., 1991.

    Google Scholar 

  35. Rozas, I., Du, Q. and Arteca, G.A., J. Mol. Graph., 13 (1995) 98.

    Google Scholar 

  36. Murray, J.S., Brinck, T., Lane, P., Paulsen, K. and Politzer, P., J. Mol. Struct. (THEOCHEM), 307 (1993) 55.

    Google Scholar 

  37. Politzer, P., Lane, P., Murray, J.S. and Brinck, T., J. Phys. Chem., 96 (1992) 7938.

    Google Scholar 

  38. Murray, J.S., Brinck, T. and Politzer, P., J. Phys. Chem., 97 (1993) 13807.

    Google Scholar 

  39. Binck, T., Murray, J.S. and Politzer, P., J. Org. Chem., 58 (1993) 7070.

    Google Scholar 

  40. Du, Q. and Arteca, G.A., J. Comput.-Aided Mol. Design, 10 (1996) 133.

    Google Scholar 

  41. Israelachvili, J.N., Intermolecular and Surface Forces, Academic Press, London, U.K., 1992.

    Google Scholar 

  42. Head-Gordon, T., J. Am. Chem. Soc., 117 (1995) 501.

    Google Scholar 

  43. Dogonadze, R.R., Kornyshev, A.A. and Ulstrup, J., In Dogonadze, R.R., Kálmán, E., Kornyshev, A.A. and Ulstrup, J. (Eds.) The Chemical Physics of Solvation, Part A: Theory of Solvation, Plenum, New York, NY, U.S.A., 1985.

    Google Scholar 

  44. Frank, H. and Evans, M., J. Chem. Phys., 13 (1945) 507.

    Google Scholar 

  45. Murray, J.S., Ranganathan, S. and Politzer, P., J. Org. Chem., 56 (1991) 3734.

    Google Scholar 

  46. Gao, J., In Smith, D.A. (Ed.) Modeling the Hydrogen Bond, American Chemical Society, Washington, DC, U.S.A., 1994.

    Google Scholar 

  47. Mishra, P.C. and Kumar, A., In Sen, K. (Ed.), Topics in Current Chemistry (174), Molecular similarity II, Springer, New York, NY, U.S.A., 1995.

    Google Scholar 

  48. Mezey, P.G., In Lipkowitz, K.B. and Boyd, D.B. (Eds.) Reviews of Computational Chemistry, Vol. 1, VCH, New York, NY, U.S.A., 1990.

    Google Scholar 

  49. Mezey, P.G., Int. J. Quantum Chem., Quantum Biol. Symp., 12 (1986) 113.

    Google Scholar 

  50. Mezey, P.G., Shape in Chemistry: An Introduction to Molecular Shape and Topology, VCH, New York, NY, U.S.A., 1993.

    Google Scholar 

  51. Walker, P.D. and Mezey, P.G., J. Am. Chem. Soc., 115 (1993) 12423.

    Google Scholar 

  52. Walker, P.D. and Mezey, P.G., J. Am. Chem. Soc., 116 (1994) 12022.

    Google Scholar 

  53. Mezey, P.G., Struct. Chem., 6 (1995) 261.

    Google Scholar 

  54. Mezey, P.G., J. Math. Chem., 18 (1995) 141.

    Google Scholar 

  55. Du, Q. and Arteca, G.A., J. Comput. Chem., 17 (1996) 1258.

    Google Scholar 

  56. Connolly, M.L., Science, 221 (1983) 709.

    Google Scholar 

  57. Connolly, M.L., J. Appl. Crystallogr., 16 (1983) 548.

    Google Scholar 

  58. Connolly, M.L., J. Am. Chem. Soc., 107 (1985) 1118.

    Google Scholar 

  59. Ooi, T., Oobatake, M., Némethy, G. and Scheraga, H.A., Proc. Natl. Acad. Sci. USA, 84 (1987) 3086.

    Google Scholar 

  60. Cabani, S. and Gianni, P., J. Chem. Soc. Faraday Trans. I, 75 (1979) 1184.

    Google Scholar 

  61. Cabani, S., Gianni, P., Mollica, V. and Lepori, L., J. Solution Chem., 10 (1981) 563.

    Google Scholar 

  62. Klebe, G. and Abraham, U., J. Med. Chem., 36 (1993) 70.

    Google Scholar 

  63. Lee, S.H. and Rossky, P.J., J. Chem. Phys., 100 (1994) 3334.

    Google Scholar 

  64. Piculell, L., J. Chem. Soc. Faraday Trans., 82 (1986) 387.

    Google Scholar 

  65. Piculell, L. and Halle, B., J. Chem. Soc. Faraday Trans., 82 (1986) 401.

    Google Scholar 

  66. Halle, B. and Piculell, L., J. Chem. Soc. Faraday Trans., 82 (1986) 415.

    Google Scholar 

  67. Borman, S., C. & EN, August (1995) 29.

  68. Dean, P.M., Molecular Foundations of Drug–Receptor Interactions, Cambridge University Press, Cambridge, U.K., 1987.

    Google Scholar 

  69. Frank, R., Theoretical Drug Design Methods, Akademie Verlag, Berlin, Germany, 1984.

    Google Scholar 

  70. Geladi, P. and Kowalski, B., Anal. Chim. Acta, 185 (1986) 1.

    Google Scholar 

  71. Geladi, P. and Kowalski, B., Anal. Chim. Acta, 185 (1986) 19.

    Google Scholar 

  72. Cramer III, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  73. Marshall, G.R. and Cramer III, R.D., Trends Pharmacol. Sci., 9 (1988) 285.

    Google Scholar 

  74. Cramer III, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Q., Arteca, G.A. & Mezey, P.G. Heuristic lipophilicity potential for computer-aided rational drug design. J Comput Aided Mol Des 11, 503–515 (1997). https://doi.org/10.1023/A:1007949918800

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007949918800

Navigation