Skip to main content
Log in

Genetic population structure of the swimming crab Callinectes danae (Crustacea: Decapoda) in southern Brazil

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The population genetic structure of the swimming crab Callinectes danae (Crustacea, Portunidae) was studied by allozyme electrophoresis along the southern coast of Brazil (Santa Catarina and Rio Grande do Sul States). The biology of C. danae is poorly known, but some studies suggest that this species depends on estuaries for reproduction and for completing its life cycle, using them as recruitment sites and nursery grounds. If estuarine retention is an important process acting in favour of the recruitment of local populations, we should expect restriction of gene flow among populations inhabiting different estuaries. Therefore, our aim was to establish whether gene flow between populations of C. danaefrom different estuaries was restricted. Samples were collected in four estuaries: São Francisco do Sul, Laguna (Santa Catarina), Patos Lagoon and Chuí Stream (Rio Grande do Sul). Eleven loci were resolved. Contingency table tests (χ2 and G) showed significant differences (P≤0.05) between pair-wise subpopulation comparisons. The estimated F ST was θ=0.065±0.019, suggesting a moderate structuring of C. danae populations. No relationship was found for the number of migrants between pairs of subpopulations and the geographic distance separating them (P= 0.292; r 2= 0.269). Nevertheless, UPGMA analysis clustered together those estuaries separated by less than 250 km. Low adult migration, the requirement of estuaries as reproductive areas, recruitment sites and nursery grounds for juveniles, together with larval and post-larval retention processes, are discussed in the context of their importance in preventing panmixia among subpopulations inhabiting different estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abreu, J., 1980. Distribuição e ecologia dos decápoda numa área estuarina de Ubatuba (SP). Bol. Inst. oceanogr. USP 29: 1–3.

    Google Scholar 

  • Ayala, F. J., J. R. Powell, M. L. Tracey, C. A. Mourão & S. Pérez-Salas, 1972. Enzyme variability in Drosophila willistoni group. IV. Genetic variation in natural populations of Drosophila willistoni. Genetica 70: 113–139.

    Google Scholar 

  • Berthelemy-Okazaki, N. J. & R. K. Okazaki, 1977. Population Genetics of the blue crab Callinectes sapidus from northwestern Gulf of Mexico. Gulf Mex. Sci. 15: 35–39.

    Google Scholar 

  • Brumbaugh, R. D. & J. R. McConaughey, 1995. Time to metamorphosis of the blue crab Callinectes sapidus megalopae: effects of benthic macroalgae. Mar. Ecol. Progr. Ser. 129: 113–118.

    Google Scholar 

  • Burton, R. S., 1983. Protein polymorphisms and genetic differentiation of marine invertebrate populations. Mar. Biol. Lett. 4: 193–206.

    Google Scholar 

  • Burton, R. S., 1986. Evolutionary consequences of restricted gene flow among natural populations of the copepod Tigriopus californicus. Bull. mar. Sci. 39: 526–535.

    Google Scholar 

  • Burton, R. S. & M. W. Feldman, 1981. Population genetics of coastal and estuarine invertebrates: are behavioral differences among species reflected in population structure? Estuaries 4: 239.

    Google Scholar 

  • Cargo, D. G., 1958. The migration of adult female of blue crabs, Callinectes sapidus Rathbun, in Chincoteague bay and adjacent waters. J. mar. Res. 16: 180–191.

    Google Scholar 

  • Cochran, W. G., 1954. Somemethods for strengthening the commonX2 tests. Biometrics 10: 417–451.

    Google Scholar 

  • Coelho, P. A. & M. A. Ramos, 1972. A constituição e a distribuição da fauna de decápodos do litoral leste da América do sul entre as latitudes 5º N e, 39º S. Trab. oceanogr. Univ. fed. Pe. 13: 133–236.

    Google Scholar 

  • Coelho, P. A. & M. A. Ramos, 1980. Crustáceos decápodos da costa do Maranhão, Brasil. Bol. Inst. oceanogr. USP 29: 135–138.

    Google Scholar 

  • Cole, M. A. & R. P. Morgan II, 1978. Genetic variation in two populations of blue crab, Callinectes sapidus. Estuaries 1: 202–205.

    Google Scholar 

  • Delevedove, G. C., 1996. Genética populacional do camarão-rosa Penaeus paulensis (Decapoda: Penaeidae) na região estuarina da Lagoa dos Patos, Rio Grande do Sul, e no litoral de Santa Catarina. Unpublished M. Sc. Thesis. Fundação Universidade do Rio Grande, Rio Grande, Brazil.

    Google Scholar 

  • Dittel, A. I. & C. E. Epifanio, 1981. Dispersal and recruitment of crab larvae in tropical estuaries. Estuaries 4: 238.

    Google Scholar 

  • Dittel, A. I. & C. E. Epifanio, 1984. Growth and development of the portunid crab Callinectes arcuatus Ordway: zoeae, megalopae, and juveniles. J. crust. Biol. 4: 491–494.

    Google Scholar 

  • Epifanio, C. E., A. K. Masse & R. W. Garvine, 1989. Transport of blue crab larvae by surface currents off Delaware Bay, U.S.A. Mar. Ecol. Progr. Ser. 54: 35–41.

    Google Scholar 

  • Epifanio, C. E., C. C. Valenti & A. E. Pembroke, 1984. Dispersal and recruitment of blue crab larvae in the Delaware Bay, U.S.A. Estuar. coast. shelf. Sci. 18: 1–12.

    Google Scholar 

  • Farias, M. C. Q., 1980. Crustáceos decápodes da Ilha da Restinga. Bol. Inst. oceanogr. USP. 29: 169–172.

    Google Scholar 

  • Forward, R. B. Jr., M. C. DeVries, D. Rittschof, D. A. Z. Frankel, J. P. Bischoff, C. M. Fisher & J. M. Welch, 1996. Effects of environmental cues on metamorphosis of the blue crab Callinectes sapidus. Mar. Ecol. Prog. Ser. 131: 165–177.

    Google Scholar 

  • Forward, R. B. Jr., D. A. Z. Frankel & D. Rittschof, 1994. Molting of megalopae from the blue crab Callinectes sapidus: effects of offshore and estuarine cues. Mar. Ecol. Prog. Ser. 113: 55–59.

    Google Scholar 

  • Forward, R. B. Jr., R. A. Tankersley, D. Blondel & D. Ritschof, 1997. Metamorphosis of the blue crab Callinectes sapidus: effects of humic acids and ammonium. Mar. Ecol. Prog. Ser. 157: 277–286.

    Google Scholar 

  • Garcia, A. M., J. P. Viera, C. E. Bemvenuti & R. M. Geraldi, 1996. Abundância e diversidade da assembléia de Crustáceos Decápodos dentro e fora de uma pradaria de Rupia maritima L., no estuário da Lagoa dos Patos (RS-Brasil). Nauplius 4: 113–128.

    Google Scholar 

  • Gaspar, M. H., 1981. Contribuição ao estudo biológico do siri Callinectes danae Smith, 1869 (Decapoda, Portunidae) do rio Itiberê (Paranaguá-Paraná). Unpublished M.Sc. Thesis, Federal University of Paraná, Curitiba, Brazil.

    Google Scholar 

  • Goodrich, D. M., J. Van Montfrans & R. J. Orth, 1989. Blue crab megalopal influx to the Chesapeake Bay: evidence for a winddriven mechanism. Estuar. coast. shelf. sci. 29: 2447–260.

    Google Scholar 

  • Goudet, J., 1995. FSTATv-1.2. A computer program to calculate F-statistics. J. Hered. 86: 485–486.

    Google Scholar 

  • Hastings, A. & S. Harrison, 1994. Metapopulation dynamics and genetics. Ann. Rev. Ecol. Syst. 25: 167–188.

    Google Scholar 

  • Hedgecock, D., 1981. Genetic consequences of larval retention: theoretical and methodological aspects. Estuaries 4: 239.

    Google Scholar 

  • Hedgecock, D., 1986. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull. mar. Sci. 39: 550–564.

    Google Scholar 

  • Johnson, D. F. & K. W. Hess, 1990. Numerical simulations of blue crab larvae dispersal and recruitment. Bull. mar. Sci. 46: 195–213.

    Google Scholar 

  • Johnson, D. R., 1995. Wind forced surface currents at the entrance to Chesapeake Bay: their effect on blue crab larval dispersion and post-larval recruitment. Bull. mar. Sci. 57: 726–738.

    Google Scholar 

  • Johnson, D. R. & B. S. Hester, 1989. Larval transport and its association with recruitment of blue crab to Chesapeake Bay. Estuar. coast. shelf. Sci. 28: 459–472.

    Google Scholar 

  • Jones, M. B. & C. E. Epifanio, 1995. Settlement of brachyuran megalopae in Delaware Bay: an analysis of time series data. Mar. Ecol. Progr. Ser. 125: 67–76.

    Google Scholar 

  • Knowlton, N. & B. D. Keller, 1986. Larvae which fall far short of their potential: highly localized recruitment in an alpheid shrimp with extended larval development. Bull. mar Sci. 39: 213–223.

    Google Scholar 

  • Kordos, L. M. & R. S. Burton, 1993. Genetic differentiation of Texas Gulf populations of the blue crab Callinectes sapidus. Mar. Biol. 117: 227–233.

    Google Scholar 

  • Levy, J. A., 1997. Genetic biochemical differentiation among marine organisms. In Seeliger, U., C. Odebrecht & J. P. Castello (eds), Subtropical Convergence Environments. The Coast and Sea in the Southwestern Atlantic Springer-Verlag, Berlin: 159–160.

    Google Scholar 

  • McConnaughey, R. A. & S. D. Sulkin, 1984. Measuring the effects of thermoclines on the verical migration of larvae of Callinectes sapidus (Brachyura: Portunidae) in the laboratory. Mar. Biol. 81: 139–145.

    Google Scholar 

  • McMillen-Jackson, A. L., T. M. Bert & P. Steele, 1994. Population genetics of the blue crab Callinectes sapidus: modest population structuring in a background of high gene flow. Mar. Biol. 118: 53–65.

    Google Scholar 

  • Medeiros, M. F. M., 1982. Ocorrência do gênero Callinectes (Crustacea-Portunidae) com especial referência à Callinectes no estuário do Rio Sergipe, Brasil. Atlântica 5: 78–79.

    Google Scholar 

  • Moreira, P. S., A. M. Paiva-Filho, C. M. Okida, J. M. M. Schmiegelow & R. Giannini, 1988. Bioecologia de crustáceos decápodos, braquiÚros, no sistema baía-estuário de Santos e São Vicente, S.P. 1. Ocorrência e composição. Bol. Inst. oceanogr. USP 36: 55–62.

    Google Scholar 

  • Morgan, S. G., R. K. Zimmer-Faust, K. L. Heck Jr. & L. D. Coen, 1996. Population regulation of blue crabs Callinectes sapidus in the northern Gulf of Mexico: postlarval supply. Mar. Ecol. Prog. Ser. 133: 73–88.

    Google Scholar 

  • Murphy, R. W., J. W. Sites, D. G. Buth & C. H. Haufler, 1990. Proteins I: Isozymes Electrophoresis. In Hillis, D. M. & C. Moritz (eds), Molecular Systematics. Sinauer Associates, Sunderland, Massachusetts: 45–126.

    Google Scholar 

  • Negreiros-Fransoze, M. L. & A. Fransozo, 1995. On the distribution of Callinectes ornatus ordway, 1863 and Callinectes danae Smith, 1869 (Brachyura, Portunidae) in the Fortaleza Bay, Ubatuba, Brazil. Iheringia Ser. Zool. P.A. 79: 13–25.

    Google Scholar 

  • Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    Google Scholar 

  • Norse, E. A., 1977. Aspects of the zoogeographic distribution of Callinectes (Brachyura: Portunidae). Bull. mar. Sci. 27: 440–447.

    Google Scholar 

  • Pita, J. B., E. S. Rodrigues, G. Lopes & J. A. P. Coelho, 1985a. Levantamento da familia Portunidae (Crustacea, Decapoda, Bachyura) no complexo baía-estuário de Santos, São Paulo, Brasil. Bol. Inst. Pesca S.P. 12: 153–162.

    Google Scholar 

  • Pita, J. B., E. S. Rodrigues, G. Lopes & J. A. P. Coelho, 1985b. Observaciones bioecológicas sobre o siri Callinectes danae Smith, 1869 (Crustacea, Portunidae), no complexo baía-estuário de Santos, Estado de São Paulo, Brasil. Bol. Inst. Pesca S.P. 12: 35–43.

    Google Scholar 

  • Poulik, M. D., 1957. Starch gel electrophoresis in a discontinuous system of buffers. Nature 180: 1477–1479.

    Google Scholar 

  • Powers, L. W., 1977. A catalogue and bibliography to the crabs (Brachyura) of the Gulf of México. Contrib. mar. Sci. 20: 1–190.

    Google Scholar 

  • Rathbun, M., 1895. The genus Callinectes. Proc. U.S. nat. Mus. 18: 349–375.

    Google Scholar 

  • Rathbun, M., 1900. The Brachyura and Macrura of Porto Rico. Bull. U.S. Fish. Comm. 20: 1–127.

    Google Scholar 

  • Rathbun, M., 1930. The cancroid crabs of America of the families Euryalidae, Portunidae, Atelecyclidae, Cancridae and Xanthidae. U.S. natl. Mus. Bull. 152: 1–609.

    Google Scholar 

  • Redfield, J. A. & J. P. Salini, 1980. Techniques of Starch-gel electrophoresis of penaeid prawn enzymes (Penaeus spp. and Metapenaeus spp.). CSIRO Aust. Div. Fish. Oceanogr. Rep. 166: 1–19.

    Google Scholar 

  • Rice, W. R., 1989. Analysing tables of statistical tests. Evolution 43: 223–225.

    Google Scholar 

  • Sawaya, P. & R. S. Pereira, 1946. Nota sobre a ecologia de alguns crustáceos decápodos marinhos de São Paulo. Bol. Fac. Filos. Ciênc. Univ. S.P., Zool. 11: 383–392.

    Google Scholar 

  • Shaklee, J. B. & C. P. Keenan, 1986. A practical guide to the techniques and methodology and its application to fish fillet identification. CSIRO mar. Labs. Rep. 177: 1–59.

    Google Scholar 

  • Schemy, R. A., 1980. Aspectos da biologia de Callinectes danae (Smith, 1869) da região de Santos, São Paulo. Unpublished M. Sc. Thesis. São Paulo University, São Paulo, Brazil.

    Google Scholar 

  • Shumway, S. E., 1983. Oxygen consumption and salinity tolerance in four Brazilian crabs. Crustaceana 44: 76–82.

    Google Scholar 

  • Slatkin, M., 1993. Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47: 264–279.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry. W.H. Freeman, San Francisco.

    Google Scholar 

  • Sulkin, S. D. & C. E. Epifanio, 1986. Natural regulation of juvenile recruitment in the blue crab (Callinectes sapidus Rathbun) and its consequences for sampling and management strategy. Can. sp. Publ. Fish aquat. Sci. 92: 117–123.

    Google Scholar 

  • Sulkin, S. D. & W. Van Heukelem, 1981. Redefining estuarine retention: factors regulating retention within the estuary versus offshore recruitment of larvae of the blue crab Callinectes sapidus. Estuaries 4: 239.

    Google Scholar 

  • Sulkin, S. D. & W. Van Heukelem, 1982. Larval retention in the crab Callinectes sapidus Rathbun: an amendment to the concept of larval retention in estuaries. In Kennedy, V. S. (ed.), Estuarine Comparisons Academic Press, New York: 459–475.

    Google Scholar 

  • Sulkin, S. D. & W. Van Heukelem, 1986. Variability in the length of the megalopal stage and its consequence to dispersal and recruitment in the portunid crab Callinectes sapidus Rathbun. Bull. mar. Sci. 39: 269–278.

    Google Scholar 

  • Swofford, D. L. & R. B. Selander, 1981. BIOSYS-I. A program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281–283.

    Google Scholar 

  • Tagatz, M. E., 1968. Biology of the blue crab Callinectes sapidus Rathbun in the St. John's River, Florida. Fish. Bull. U.S. 67: 17–33.

    Google Scholar 

  • Tracey, M. L., K. Nelson, D. Hedgecock, R. A. Schleser & M. L. Pressick, 1975. Biochemical genetics of lobsters: genetic variation and the structure of American lobster (Homarus americanus) populations. J. Fish Res. Bd Can. 32: 2091–2101.

    Google Scholar 

  • Weber, L. I., M. B. Conceição, M. L. Ruffino & J. A. Levy, 1993. Population genetics of the shrimp Artemesia longinaris (Crustacea: Penaeidae) on the south-west Atlantic coast. Comp. Biochem. Physiol. 106B: 1015–1020.

    Google Scholar 

  • Weber, L. I., R. G. Hartnoll & J. P. Thorpe, 2000. Genetic divergence and larval dispersal in two spider crabs (Crustacea: Decapoda). In Solé-Cava, A. M., C. A. M. Russo & J. P. Thorpe (eds), Marine Genetics. Developments in Hydrobiology 144. Kluwer Academic Publishers, Dordrecht: 211–219. Reprinted from Hydrobiologia 420.

    Google Scholar 

  • Weir, B. S. & C. C. Cockerham, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Google Scholar 

  • Williams, A. B., 1974. The swimming crabs of the genus Callinectes (Decapoda, Portunidae). Fish. Bull. U.S.A. 72: 685–798.

    Google Scholar 

  • Wolcott, D. L. & M. C. De Vries, 1994. Offshore megalopae of Callinectes sapidus: depth of collection, molt stage and response to estuarine cues. Mar. Ecol. Prog. Ser. 109: 157–163.

    Google Scholar 

  • Wolf, P., 1981. Is retention the result of active or passive phenomena? Estuaries 4: 239.

    Google Scholar 

  • Zavialov, P. O., R. D. Ghisolfi & C. A. E. Garcia, 1998. An inverse model for seasonal circulation over the Southern Brazilian Shelf: near-surface velocity from the heat budget. J. phys. Oceanogr. 28: 545–562.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, L.I., Levy, J.A. Genetic population structure of the swimming crab Callinectes danae (Crustacea: Decapoda) in southern Brazil. Hydrobiologia 420, 203–210 (2000). https://doi.org/10.1023/A:1003992630229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003992630229

Navigation