Skip to main content
Log in

Population regulation and role of mesozooplankton in shaping marine pelagic food webs

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Copepods constitute the majority of the mesozooplankton in the oceans.By eating and being eaten copepods have implications for the flow of matterand energy in the pelagic environment. I first consider populationregulation mechanisms in copepods by briefly reviewing estimates of growthand mortality rates and evidence of predation and resource limitation. Theeffects of variations in fecundity and mortality rates for the demography ofcopepod populations are then examined by a simple model, which demonstratesthat population growth rates are much more sensitive to variations inmortality than to variations in fecundity. This is consistent with theobserved tremendous variation in copepod fecundity rates, relatively low andconstant mortality rates and with morphological and behavioralcharacteristics of pelagic copepods (e.g., predator perception and escapecapability, vertical migration), which can all be considered adaptations topredator avoidance. The prey populations of copepods, mainly protozoa(ciliates) and phytoplankton, may be influenced by copepod predation tovarying degrees. The highly variable morphology and the population dynamics(e.g., bloom formation) of the most important phytoplankton prey populations(diatoms, dinoflagellates) suggest that predation plays a secondary role incontrolling their dynamics; availability of light and nutrients as well ascoagulation and sedimentation appear generally to be more important. Thelimited morphological variation of planktonic ciliates, the well developedpredator perception and escape capability of some species, and the oftenresource-unlimited in situ growth rates of ciliates, on the other hand,suggest that copepod predation is important for the dynamics of theirpopulations. I finally examine the implications of mesozooplankton activityfor plankton food webs, particularly their role in retarding vertical fluxesand, thus, the loss of material from the euphotic zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksnes, D. L., 1996. Natural mortality, fecundity and development in marine planktonic copepods–implications of behaviour. Mar. Ecol. Prog. Ser. 131: 315–316.

    Google Scholar 

  • Aksnes, D. L. & T. Magnesen, 1988. A population dynamic approach to the estimation of production of four calanoid copepods in Lindåspollene, western Norway. Mar. Ecol. Prog. Ser. 45: 57–68.

    Google Scholar 

  • Alldredge, A. L. & M. V. Silver, 1988. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20: 41–82.

    Article  Google Scholar 

  • Andersson, M., 1996. Regulering af copepodbestande i lavvandede fjorde. Betydning af fødebegrænsning og mortalitet. M.Sc. thesis, University of Copenhagen, 78 pp.

  • Bakker, C. & P. Van Rijswijk, 1987. Development time and growth rate of the marine copepod Temora longicornisas related to food conditions in the Oosterschelde estuary (Southern North Sea). Neth. J. Sea Res. 21: 125–141.

    Article  Google Scholar 

  • Banse, K., 1995. Zooplankton: Pivotal role in the control of ocean production. ICES J. Mar. Sci. 52: 265–277.

    Article  Google Scholar 

  • Bechman, B. R. & W. T. Peterson, 1986. Egg production by Acartia tonsain Long Island Sound. J. Plankton Res. 8: 917–925.

    Google Scholar 

  • Berggreen, U., B. Hansen & T. Kiørboe, 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsaduring development: implications for determination of copepod production. Mar. Biol. 99: 341–352.

    Article  Google Scholar 

  • Bollens, S. M & B. W. Frost, 1991. Diel vertical migration in zooplankton: Rapid individual response to predators. J. Plankton Res. 13: 1359–1365.

    Google Scholar 

  • Bollens, S. M, B. W. Frost & J. R. Cordell, 1994. Chemical, mechanical and visual cues in the vertical migration behaviour of the marine planktonic copepod Acartia hudsonica. J. Plankton Res. 16: 555–564.

    Google Scholar 

  • Burkill, P. H. & Kendall, T. F., 1982. Production of the copepod Eurytemora affinisin the Bristol Channel. Mar. Ecol. Prog. Ser. 7: 21–31.

    Google Scholar 

  • Carrick, H. J. & G. L. Fahnenstiel, 1992. Growth and production of planktonic protozoa in Lake Michigan: In situ versus in vitro comparisons and importance to food web dynamics. Limnol. Oceanogr. 37: 1221–1235.

    Google Scholar 

  • Checkley, D. M. Jr., 1980. Food limitation of egg production by a marine, planktonic copepod in the sea off southern California. Limnol. Oceanogr. 25: 991–998.

    Google Scholar 

  • Chrisholm, L. A. & J. C. Roff, 1990a. Sizeweight relationships and biomass of tropical neritic copepods off Kingston, Jamaica. Mar. Biol. 106: 71–77.

    Article  Google Scholar 

  • Chrisholm, L. A. & J. C. Roff, 1990b. Abundances, growth rates, and production of tropical neritic copepods off Kingston, Jamaica. Mar. Biol. 106: 79–89.

    Article  Google Scholar 

  • Colebrook, J. M., 1979. Continuous plankton records: Seasonal cycles of phytoplankton and copepods in the North Atlantic Ocean and the North Sea. Mar. Biol. 51: 23–32.

    Article  Google Scholar 

  • Dagg, M., 1978. Estimated, in situ, rates of egg production for the copepod Centropages typicus(Krøyer) in the New York Bight. J. exp. mar. Biol. Ecol. 34: 183–196.

    Google Scholar 

  • Dagg, M., 1993. Sinking particles as a possible source of nutrition for the large calanoidcopepod Neocalanus cristatusin the subarctic Pacific Ocean. Deep-Sea Res. 40: 1431–1445.

    Article  Google Scholar 

  • Dagg, M. J. & E. P. Green, 1994. Marine snow in the northern Gulf of Mexico. EOS, Transactions, AGU, 75: 36.

    Google Scholar 

  • Diel, S. & W. C. M. Klein Breteler, 1986. Growth and development of Calanusspp. (Copepoda) during a spring phytoplankton succession in the North Sea. Mar. Biol. 91: 85–92.

    Article  Google Scholar 

  • Dolan, J. R., 1991. Microphagous ciliates in mesohaline Chesapeake Bay waters: estimates of growth rates and consumption by copepods. Mar. Biol. 111: 303–309.

    Article  Google Scholar 

  • Durbin, A. G. & E. G. Durbin, 1981. Standing stock and estimated production rates of phytoplankton and zooplankton in Narragansett Bay, Rhode Island. Estuaries 4: 24–41.

    Article  Google Scholar 

  • Durbin, E.G., A. G. Durban, T. J. Smayda & P.G. Verity, 1983. Food limitation of production by adult Acartia tonsain Narragansett Bay, Rhode Island. Limnol. Oceanogr. 28: 1199–1213.

    Google Scholar 

  • Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70: 1063–1085.

    Google Scholar 

  • Fenchel, T. & B. J. Finlay, 1983. Respiration rates in heterotrophic, free-living protozoa. Microbiol. Ecol. 9: 99–122.

    Article  Google Scholar 

  • Fowler, S. W. & G. A. Knauer, 1986. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr. 16: 147–194.

    Article  Google Scholar 

  • Fransz, H. G. & S. Diel, 1985. Secondary production of Calanus finmarchicus(Copepoda:Calanoidea) in a transitional system of the Fladen Ground area (Northern North Sea) during the spring of 1983. In P. E. Gibbs (ed.), Proc. 19th Europ. Mar. Biol. Symp. Cambridge University Press, Cambridge: 123–133.

    Google Scholar 

  • Frost, B. W., 1988. Variability and possible adaptive significance of diel vertical migration in Calanus pacificus, a planktonic marine copepod. Bull. Mar. Sci. 43: 675–694.

    Google Scholar 

  • Gilmer, R. W. & G. R. Harbison, 1986. Morphology and field behaviour of pteropod molluscs: Feeding methods in the families Cavoliniidae, Limacinidae, and Peraclididae (Gastropoda: Thecosomata). Mar. Biol. 91: 47–57.

    Article  Google Scholar 

  • Goldman, J. C., 1987. On phytoplankton growth rates and particulate C: N ratios at low light. Limnol. Oceanogr. 31: 1358–1363.

    Article  Google Scholar 

  • González, H. E. & V. Smetacek, 1994. The possible role of the cyclopoid copepod Oithonain retarding vertical flux of zooplankton faecal material. Mar. Ecol. Prog. Ser. 113: 233–246.

    Google Scholar 

  • Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control, and competition. Am. Nat. 94: 421–425.

    Article  Google Scholar 

  • Hansen, B. & K. Christoffersen, 1995. Specific growth rates of heterotrophic plankton organisms in a eutrophic lake during a spring bloom. J. Plankton Res. 17: 413–430.

    Google Scholar 

  • Hansen, J. L. S., T. Kiørboe & A. L. Alldredge, 1996. Marine snow derived from abandoned larvacean houses: sinking rates, particle content and mechanism of aggregate formation. Mar. Ecol. Prog. Ser. 141: 205–215.

    Google Scholar 

  • Haslund, O. H. & M. Fryd, 1990. In situundersøgelser af juvenile copepoders vækstrater gennem en sæson i Kattegat. M.Sc. thesis, University of Copenhagen, 97 pp.

  • Huntley, M. & M. D. G. Lopez, 1992. Temperature dependent growth production of marine copepods: a global synthesis. Am.Nat. 140: 201–242.

    Article  CAS  PubMed  Google Scholar 

  • Hutchings, L., H. M. Verheye, B. A. Mitchell-Innes, W. T. Peterson, J. Huggett & S. Painting, 1995. Copepod production in the Southern Benguela system. ICES J. mar. Sci. 52: 439–455.

    Article  Google Scholar 

  • Ianora, A. & I. Buttino, 1990. Seasonal cycle in population abundance and egg production in the planktonic copepods Centropages typicusand Acartia clausii. J. Plankton Res. 12: 473–481.

    Google Scholar 

  • Jackson, G. A., 1993. Flux feeding as a mechanism for zooplankton grazing and its implications for vertical particle flux. Limnol. Oceanogr. 38: 1328–1331.

    Google Scholar 

  • Jonsson, P. & P. Tiselius, 1990. Feeding behaviour, prey detection and capture efficiency of the copepod Acartia tonsafeeding on planktonic ciliates. Mar. Ecol. Prog. Ser. 60: 35–44.

    Google Scholar 

  • Kimmerer, W. J., 1983. Direct measurements of the production: biomass ratio of the subtropical calanoid copepod Acrocalanus inermis. J. Plankton Res. 5: 1–14.

    Google Scholar 

  • Kimmerer, W. J., 1991. Predatory influences on prey distributions in coastal waters. Bull. Plankton Soc. Japan, Spec. Vol.: 161–174.

  • Kimmerer, W. J. & A. D. McKinnon, 1987. Growth, mortality, and secondary production of the copepod Acartia tranteriin Westernport Bay, Australia. Limnol. Oceanogr. 32: 14–28.

    Google Scholar 

  • Kivi, K., S. Kaitala, H. Kuosa, J. Kuparinen, E. Leskinen, R. Lignell, B. Marcussen & T. Tamminen, 1993. Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limnol. Oceanogr. 38: 893–905.

    Google Scholar 

  • Kiørboe, T., 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. mar. Biol. 29: 1–72.

    Article  Google Scholar 

  • Kiørboe, T., C. Lundsgaard, M. Olesen & J. L. S. Hansen, 1994. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. J. mar. Res. 52: 297–323.

    Article  Google Scholar 

  • Kiørboe, T. & T. G. Nielsen, 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol. Oceanogr. 39: 493–507.

    Google Scholar 

  • Kiørboe, T., F. Møhlenberg & P. Tiselius, 1988. Propagation of planktonic copepods: production and mortality of egg. In G. A. Boxshall & H. K. Schminke (eds), Biology of Copepods. Developments i Hydrobiology 47. Kluwer Academic Press, Dordrecht: 219–225. Reprinted from Hydrobiologia 167/168.

    Google Scholar 

  • Kiørboe, T. & M. Sabatini, 1994. Reproductive and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods. J. Plankton Res. 16: 1353–1366.

    Google Scholar 

  • Kiørboe, T. & M. Sabatini, 1995. Scaling of fecundity, growth and development in marine planktonic copepods. Mar. Ecol. Prog. Ser. 120: 285–298.

    Google Scholar 

  • Kiørboe, T., E. Saiz & M. Viitasalo, 1996. Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 143: 65–75.

    Google Scholar 

  • Landry, M. R., 1978. Population dynamics and Production of a Planktonic Marine Copepod, Acartia clausii, in a Small Temperate Lagoon on San Juan Island, Washington. Int. Revue ges. Hydrobiol. 63: 77–119.

    Google Scholar 

  • Landry, M. R., 1980. Detection of prey by Calanus finmarchicus: implications of the first antennae. Limnol. Oceanogr. 25: 545–549.

    Google Scholar 

  • Landry, M. R., 1981. Switching between herbivory and carnivory by the planktonic marine copepod Calanus pacificus. Mar. Biol. 65: 77–82.

    Article  Google Scholar 

  • Leakey, R. J. G., P. H. Burkill & M. A. Sleigh, 1994. Ciliate growth rates from Plymouth Sound: comparison of direct and indirect estimates. J. mar. biol. Ass. U.K. 74: 849–861.

    Google Scholar 

  • Levinsen, H., 1995. Protozooplanktonets betydning i et arktisk Pelagisk fødenet. M.Sc. thesis, Marine Biological Laboratory, University of Copenhagen, 53 pp.

  • Lonsdale, D. J., E. M. Cosper, W. S. Kim, M. Doall, A. Divadeenam & S. H. Jonasdottir, 1996. Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects. Mar. Ecol. Prog. Ser. 134: 247–263.

    Google Scholar 

  • Miller, C. B., M. E. Huntley & E. R. Brooks, 1984. Post-collection molting rates of planktonic, marine copepods: Measurement, application, problems. Limnol. Oceanogr. 29: 1274–1289.

    Google Scholar 

  • Miller, C. B. & R. D. Nielsen, 1988. Development and growth of large, calanid copepods in the ocean Subarctic Pacific, May 1984. Prog. Oceanogr. 20: 275–292.

    Article  Google Scholar 

  • Mullin, M. M., 1991. Relative variability of reproduction and mortality in two pelagic copepod populations. J. Plankton Res. 13: 1381–1387.

    Google Scholar 

  • Munk,. H. & G. A. Riley, 1952. Absorption of nutrients by aquatic plants. J. Mar. Res. 11: 215–240.

    Google Scholar 

  • Myers, R. A. & J. R. Runge, 1983. Predictions of seasonal natural mortality rates in a copepod population using life history theory. Mar. Ecol. Prog. Ser. 11: 189–194.

    Google Scholar 

  • Nielsen, T. G. & T. Kiørboe, 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnol. Oceanogr. 39: 508–519.

    Google Scholar 

  • Ohman, M. D., 1986. Predator-limited population growth of the copepod Pseudocalanussp. J. Plankton Res. 8: 673–713.

    Google Scholar 

  • Ohman, M. D., 1988. Behavioral responses of zooplankton to predation. Bull. Mar. Sci. 43: 530–550.

    Google Scholar 

  • Ohman, M. D., 1990. The demographic benefits of diel vertical migration by zooplankton. Ecol. Monogr. 60: 257–281.

    Article  Google Scholar 

  • Ohman, M. D. & S. N. Wood, 1995. The inevitability of mortality. ICES J. Mar. Sci. 52: 517–522.

    Article  Google Scholar 

  • Ohman, M. D. & S. N. Wood, 1996. Mortality estimation for planktonic copepods: Pseudocalanus newmaniin a temperate fjord. Limnol. Oceanogr. 41: 126–135.

    CAS  Google Scholar 

  • Paffenhöfer, G.-A., 1975. On the biology of appendicularia of the southeastern North Sea. 10th Europ. Symp. Mar. Biol., Ostende, Belgium 2: 437–455.

    Google Scholar 

  • Paffenhöfer, G.-A., 1993. On the ecology of marine cyclopoid copepods (Crustacea, Copepoda, Cyclopoida). J. Plankton Res. 15: 37–55.

    Google Scholar 

  • Paffenhöfer, G.A. & S. C. Knowles, 1979. Ecological implications of fecal pellets production and consumption by copepods. J. mar. Res. 37: 35–49.

    Google Scholar 

  • Peterson, W. T., P. Tiselius & T. Kiørboe, 1991. Copepod egg production, moulting and growth rates, and secondary production, in the Skagerrak in August 1988. J. Plankton Res. 13: 131–154.

    Google Scholar 

  • Peterson, W. T. & W. J. Kimmerer, 1994. Processes controlling recruitment of the marine calanoid copepod Temora longicornis in Long Island Sound: Egg production, egg mortality, and cohort survival rates. Limnol. Oceanogr. 39: 1594–1605.

    Article  Google Scholar 

  • Pielou, E. C., 1969. An Introduction to Mathematical Ecology. Wiley-Interscience, New York, 286 pp.

    Google Scholar 

  • Rudstam, L. G., G. Aneer & M. Hildén, 1994. Top-down control in the pelagic Baltic ecosystem. Dana 10: 105–129.

    Google Scholar 

  • Sabatini, M. & T. Kiørboe, 1994. Egg production, growth and development of the cyclopoid copepod Oithona similis. J. Plankton Res. 16: 1329–1351.

    Google Scholar 

  • Saiz, E. & T. Kiørboe, 1995. Predatory and suspension feeding of the copepod Acartia tonsain turbulent environments. Mar. Ecol. Prog. Ser. 122: 147–158.

    Google Scholar 

  • Seki, H. Red tide of Oikopleurain Saanich Inlet. Lamer Tome 11, No. 3: 153–158.

  • Smetacek, V., 1980. Zooplankton standing stock, copepod fecal pellets and particulate detritus in Kiel Bight. Estuar. coast. Mar. Sci. 2: 477–490.

    Google Scholar 

  • Smetacek, V. S., 1984. Growth dynamics of a common Baltic protozooplankter: the ciliategenus Lohmaniella. Limnologica (Berlin) 15: 371–376.

    CAS  Google Scholar 

  • Smetacek, V. & F. Pollehne, 1986. Nutrient cycling in pelagic systems: A reappraisal of the conceptual framework. Ophelia 26: 401–428.

    Google Scholar 

  • Stoecker, D. K. & D. A. Egloff, 1987. Predation by Acartia tonsa Dana on planktonic ciliates and rotifers. J. exp. mar. Biol. Ecol. 110: 53–68.

    Article  Google Scholar 

  • Tiselius, P., 1989. Contribution of aloricate ciliates to the diet of Acartia clausiand Centropages hamatusin coastal waters. Mar. Ecol. Prog. Ser. 56: 49–56.

    Google Scholar 

  • Tiselius, P. & P. R. Jonsson, 1990. Foraging behaviour of six calanoid copepods: observations and hydrodynamic analysis. Mar. Ecol. Prog. Ser. 66: 23–33.

    Google Scholar 

  • Tranter, D. J., 1976. Herbivore production. In D. H. Cushing & J. J. Walsh (eds), The Ecology of the Seas. Blackwell Scientific Publications, Oxford: 186–224.

    Google Scholar 

  • Tumantseva, N. I. & A. I. Kopylov, 1985. Reproduction and production rates of planktonic infusoria in coastal waters of Peru. Oceanology 25: 390–394.

    Google Scholar 

  • Uye, S.-I., 1982. Population dynamics and production of Calanus sinicus(Copepoda: Calanoida) in inlet waters. J. exp. mar. Biol. Ecol. 57: 55–83.

    Article  Google Scholar 

  • Verity, P., 1986. Growth rates of natural tintinnid populations in Narragansett Bay. Mar. Ecol. prog. Ser. 29: 117–126.

    Google Scholar 

  • Verity, P. G. & V. Smetacek, 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130: 277–293.

    Google Scholar 

  • Vuorinen, I., 1987. Vertical migration of Eurytemora(Crustacea, Copepoda): A compromise between the risk of predation and decreased fecundity. J. Plankton Res. 9: 1037–1046.

    Google Scholar 

  • Walker, D. R. & W. T. Peterson, 1991. Relationships between hydrography, phytoplankton production, biomass, cell size and species composition, and copepod production in the southern Benguela Upwelling system in April 1988. S. Afr. J. mar. Sci. 11: 289–305.

    Google Scholar 

  • Wiadnyana, N. W. & F. Rassoulzadegan, 1989. Selective feeding of Acartia clausiand Centropages typicuson microzooplankton. Mar. Ecol. Prog. Ser. 53: 37–45.

    Google Scholar 

  • Williamson, C. E. & H. A. Vanderploeg, 1988. Predatory suspension-feeding in Diaptomus: Prey defense and the avoidance of cannibalism. Bull. Mar. Sci. 43: 561–572.

    Google Scholar 

  • Yen, J., P. H. Lenz, D. V. Gassie & D. K. Hartline, 1992. Mechanoreceptors in marine copepods: electrophysiological studies on the first antennae. J. Plankton Res. 14: 495–512.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiørboe, T. Population regulation and role of mesozooplankton in shaping marine pelagic food webs. Hydrobiologia 363, 13–27 (1997). https://doi.org/10.1023/A:1003173721751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003173721751

Navigation