Skip to main content
Log in

Planktonic food web in marine mesocosms in the Eastern Mediterranean: bottom-up or top-down regulation?

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A mesocosm experiment was conducted in order to studythe structure of the planktonic food web. The dynamicsof pico-, nano- and microplankton populations werefollowed during 40 days in four large (40 m3)enclosures. In three tanks a gradient of addednutrients (nitrogen and phosphorus) was applied, whilea fourth tank was used as a control. On day 14, thetop predator (sea bream Sparus aurata larvae)was introduced into the tanks and part of the watercolumn in each tank was isolated in a plastic bagwithout fish larvae, to act as a control forpredation. Physical parameters, chlorophyll aand nutrient concentrations, as well as planktonconcentrations were monitored. A diatom bloom wasobserved in all four tanks, in the first phase endingwith silicate depletion. Flagellate and dinoflagellateabundance subsequently increased, these organismsbeing limited by zooplankton grazing. The zooplanktonpopulations were controlled by both resources (mostlyflagellates) and predation (by fish larvae) asindicated by the results of the control experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role ofwater-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Bjornsen, P. K., B. Riemann, S. J. Horsted, T. G. Nielsen & J. Pock-Sten, 1988. Trophic interactions between heterotrophic nanoflagellates and bacterioplankton in manipulated seawater enclosures. Limnol. Oceanogr. 33: 409–420.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Fish predation and herbivory can regulate lake ecosystems. Bioscience 35: 634–639.

    Article  Google Scholar 

  • Dolan, J. R. & C. L. Gallegos, 1991. Trophic coupling of rotifers, microflagellates and bacteria during fall months in the Rhode River Estuary. Mar. Ecol. Prog. Ser. 77: 147–156.

    Google Scholar 

  • Drenner, R. W., S. T. Threlkeld & M. D. McRacken, 1986. Experimental analysis of the direct and indirect effects of an omnivorous filter-feeding clupeid on plankton community structure. Can. J. Fish. aquat. Sci. 43: 1935–1945.

    Google Scholar 

  • Estrada, M., 1991. Phytoplankton assemblages across a NW Mediterranean front: Changes from winter mixing to spring stratification. In J. D. Ros & N. Prat (eds), Homage to Ramon Margalef; or, Why there is such pleasure in studying nature. Oecol. aquat. 10: 157–185.

  • Fuhrman, J. A. & C. A. Suttle, 1993. Viruses in marine planktonic systems. Oceanography 6: 51–63.

    Google Scholar 

  • Gamble, J. C., J. M. Davies & J. H. Steele, 1977. Loch Ewe bag experiment, 1974. Bull. mar. Sci. 27: 146–175.

    Google Scholar 

  • Horsted, S. J., T. G. Nielsen, B. Riemann, J. Pock-Steen & P. K. Bjornsen, 1988. Regulation of zooplankton by suspension-feeding bivalves and fish in estuarine enclosures. Mar. Ecol. Prog. Ser. 48: 217–224.

    Google Scholar 

  • Kentouri, M. & P. Divanach, 1983. Contribution à la connaissance du comportement et de la biologie des larves de marbré Lithognathus mormyrus(Sparides) en élevage. Ann. Zootech. 32: 135–152.

    Google Scholar 

  • Kentouri, M. & P. Divanach, 1986. Sur l’importance des ciliés pélagiques dans l’alimentation des stades larvaires de poissons. Ann. Biol. 25: 307–318.

    Google Scholar 

  • Kivi, K., H. Kuosa & S. Tanskanen, 1996. An experimental study on the role of crustacean and microprotozoan grazers in the planktonic food web. Mar. Ecol. Prog. Ser. 136: 59–68.

    Google Scholar 

  • Kivi, K., S. Kaitala, H. Kuosa, J. Kuparinen, E. Leskinen, R. Lignell, B. Marcussen & T. Tamminen, 1993. Nutrient limitation and grazing control of the Baltic plankton community during annual succession. Limnol. Oceanogr. 38: 893–905.

    Google Scholar 

  • Kleppel, G. S., D. V. Holliday & R. E. Pieper, 1991. Trophic interactions between copepods and microplankton: A question about the role of diatoms. Limnol. Oceanogr. 36: 172–178.

    Article  Google Scholar 

  • Krebs, C. J., 1989. Ecological methodology. Harper & Row, New York, 654 pp.

    Google Scholar 

  • Kuuppo-Leinikki, P., R. Autio, S. Hallfors, H. Kuosa, J. Kuparinen & R. Pajuniemi, 1994. Trophic interactions and carbon flow between picoplankton and protozoa in pelagic enclosures manipulated with nutrients and a top predator. Mar. Ecol. Prog. Ser. 107: 89–102.

    Google Scholar 

  • Laval-Peuto, M. & F. Rassoulzadegan, 1988. Autofluorescence of marine planktonic Oligotrichina and other ciliates. Hydrobiologia 159: 99–110.

    Google Scholar 

  • Lignell, R., S. Kaitala & H. Kuosa, 1992. Factors controlling phyto-and bacterioplankton in late spring on a salinity gradient in the northern Baltic. Mar. Ecol. Prog. Ser. 84: 121–131.

    Google Scholar 

  • Malone, T. C. & H. W. Ducklow, 1990. Microbial biomass in the coastal plume of Chesapeake Bay: phytoplankton-bacterioplankton relationships. Limnol. Oceanogr. 35: 296–312.

    CAS  Google Scholar 

  • Maranger, R., D. F. Bird & S. K. Juniper, 1994. Viral and bacterial dynamics in Arctic sea ice during the spring algal bloom near Resolute, N.W.T., Canada. Mar. Ecol. Prog. Ser. 111: 121–127.

    Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Article  Google Scholar 

  • Northcote, T. G., 1988. Fish in the structure and function of freshwater ecosystems: A ‘topdown’ view. Can. J. Fish. aquat. Sci. 45: 361–379.

    Article  Google Scholar 

  • Parsons, T. R., P. J. Harrison & R. Waters, 1978. An experimental simulation of changes in diatom and flagellate blooms. J. exp. mar. Biol. Ecol. 32: 285–294.

    Article  CAS  Google Scholar 

  • Pierce, R. W. & J. T. Turner, 1992. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6: 139–181.

    Google Scholar 

  • Pitta, P., 1996. Dynamics of the plankton community in sea bream (Sparus aurata) rearing mesocosms. Ph. D. thesis, University of Crete, Greece, 229 pp.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Rassoulzadegan, F. & R. W. Sheldon, 1986. Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine environment. Limnol. Oceanogr. 31: 1010–1021.

    Google Scholar 

  • Riemann, B., H. M. Sorensen, P. K. Bjornsen, S. J. Horsted, L. M. Jensen, T. G. Nielsen & M. Sondergaard, 1990. Carbon budgets of the microbial food web in estuarine enclosures. Mar. Ecol. Prog. Ser. 65: 159–170.

    CAS  Google Scholar 

  • Roff, J. C., K. Middlebrook & F. Evans, 1988. Long-term variability in North Sea zooplankton off the Northumberland coast: productivity of small copepods and analysis of trophic interactions. J.mar. biol. Ass. U.K. 68: 143–164.

    Article  Google Scholar 

  • Sanders, R.W., 1991. Mixotrophic protists in marine and freshwater ecosystems. J. Protozool. 38: 76–81.

    Google Scholar 

  • Shapiro, J. & D. I. Wright, 1984. Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwat. Biol. 14: 371–383.

    Article  Google Scholar 

  • Sherr, E. B., B. F. Sherr & L. J. Albright, 1987. Bacteria: Link or sink? Science 235: 88–89.

    Google Scholar 

  • Sherr, E. B., B. F. Sherr, R. D. Fallon & S. Y. NewellL, 1986. Small, aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol. Oceanogr. 31: 177–183.

    Google Scholar 

  • Stoecker, D. & J. M. Capuzzo, 1990. Predation on Protozoa: its importance to zooplankton. J. Plankton Res. 12: 891–908.

    Google Scholar 

  • Stoecker, D. K. & D. A. Egloff, 1987. Predation by Acartia tonsa Dana on planktonic ciliates and Rotifers. J. exp. mar. Biol. Ecol. 110: 53–68.

    Article  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Can. J. Fish. aquat. Sci. 167: 1–310.

    Google Scholar 

  • Tranvik, L. J. & J. McN. Sieburth, 1989. Effects of flocculated humic matter on free and attached pelagic microorganisms. Limnol. Oceanogr. 34: 688–699.

    Article  CAS  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-methodik.. Mitt. int. Ver. Limnol. 9: 323–332.

    Google Scholar 

  • Vanni, M. J., 1987. Effects of food availability and fish predation on a zooplankton community. Ecol. Monogr. 57: 61–88.

    Article  Google Scholar 

  • Verity, P. G. & V. Smetacek, 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130: 277–193.

    Google Scholar 

  • Weisse, T., 1991. The annual cycle of heterotrophic freshwater nanoflagellates: Role of bottom-up versus top-down control. J. Plankton Res. 13: 167–185.

    Google Scholar 

  • Yentsch, C. S. & D. W. Menzel, 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res. 10: 221–231.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitta, P., Giannakourou, A., Divanach, P. et al. Planktonic food web in marine mesocosms in the Eastern Mediterranean: bottom-up or top-down regulation?. Hydrobiologia 363, 97–105 (1997). https://doi.org/10.1023/A:1003121704913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003121704913

Navigation