Skip to main content
Log in

Vertical distribution in and isolation of bacteria from Lake Vanda: an Antarctic lake

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Vertical distribution of bacteria in Lake Vanda, an Antarctic meromictic lake, was examined by the acridine orange epifluorescence direct count method. Total bacteria were 104–105 cells · ml−1 in the water at 55 m depth and above, and increased drastically to 107 cells · ml−1 in the bottom water. Filamentous or long rodshaped bacteria occurred at a high frequency in the upper layers, but in the bottom layers most bacteria were coccoidal or short rods. Mean bacterial cell volume in water of between 10 m and 60 m deep was fairly large compared with common bacterial populations in seawater and lake water. Aerobic heterotrophic bacteria were recovered from the water of a depth of 30 m and above, and were assumed to belong to Caulobacter. Viable heterotrophic bacteria were not recovered from the high salinity deep water by media prepared with the same deep water. Phototrophic purple non-sulphur bacteria were isolated by enrichment cultures from water at 55 m depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizaki, M., A. Otsuki, T. Fukushima, M. Hosomi & K. Muraoka, 1981. Application of Carlson's trophic state index to Japanese lakes and relationships between the index and other parameters. Verh. int. Ver. Limnol. 21: 675–681.

    Google Scholar 

  • Angino, E. E. & B. Armitage, 1963. A geochemical study of Lakes Bonney and Vanda, Victoria Land, Antarctica. J. Geol. 71: 89–95.

    Google Scholar 

  • Benoit, R., R. Hatcher & W. Green, 1971. Bacteriological profiles and some chemical characteristics of two permanently frozen Antarctic lakes. In J. Cairns,Jr. (ed.), The Structure and Function of Fresh-Water Microbial Communities. Virginia Polytechnic and State University, Blacksburg: 281–293.

    Google Scholar 

  • Buchanan, R. E. & N. E. Gibbons (eds), 1974. Bergey's Manual of Determinative Bacteriology, 8th Edn. Williams & Wilkins Co., Baltimore: 153–155.

    Google Scholar 

  • Cameron, R. E., F. A. Morelli & L. P. Randall, 1972. Aerial, aquatic and soil microbiology of Don Juan Pond, Antarctica. Antarct. J. US 7: 452–458.

    Google Scholar 

  • Ferguson, R. L. & P. Rublee, 1976. Contribution of bacteria to standing crop of coastal plankton. Limnol. Oceanogr. 21: 141–144.

    Google Scholar 

  • Fuhrman, J. A., 1981. Influence of method on the apparent size distribution of bacterioplankton cells: epifluorescence microscopy compared to scanning electron microscopy. Mar. Ecol. Prog. Ser. 5: 103–106.

    Google Scholar 

  • Goldman, C. R., D. T. Mason & J. E. Hobbie, 1967. Two Antarctic desert lakes. Limnol. Oceanogr. 12: 295–310.

    Google Scholar 

  • Hand, R. M., 1980. Bacterial populations of two saline Antarctic lakes. In P. A. Trudinger & M. R. Walter (eds.), Biogeochemistry of Ancient and Modern Environments. Proc. 4th int. Symp. Envir. Biogeochem. (ISEB): Springer-Verlag, Berlin: 123–129.

    Google Scholar 

  • Hand, R. M. & H. R. Burton, 1982. Microbial ecology of an Antarctic saline meromictic lake. Hydrobiologia 82: 363–374.

    Google Scholar 

  • Herbert, R. A., 1974. Isolation and identification of photosynthetic bacteria (Rhodospirillaceae) from Antarctic marine and freshwater sediments. J. appl. Bacteriol. 41: 75–80.

    Google Scholar 

  • Hiraishi, A. & H. Kitamura, 1984. Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. Bull. jap. Soc. scient. Fish. 50: 1929–1937.

    Google Scholar 

  • Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. envir. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Hodson, R. E., F. Azam, A. F. Carlucci, J. A. Fuhrman, D. M. Karl & O. Holm-Hansen, 1981. Microbial uptake of dissolved organic matter in McMurdo Sound, Antarctica. Mar. Biol. 61: 89–94.

    Google Scholar 

  • Kogure, K., U. Simidu & N. Taga, 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25: 415–420.

    Google Scholar 

  • Kriss, A. E., I. N. Mitskevich, E. P. Rozanova & L. Osnitskaya, 1976. Microbiological investigations of Lake Vanda (Antarctica). Microbiology 45: 917–922. [Translated from Mikrobiologiya 45: 1075–1081].

    Google Scholar 

  • Matsumoto, G., T. Torii & T. Hanya, 1979. Distribution of organic constituents in lake waters and sediments of the McMurdo Sound region in the Antarctic. In T. Nagata (ed.), Proceedings of the Seminar III on Dry Valley Drilling Project, 1978. Mem. natn. Inst. Polar Res., Spec. Issue 13. National Institute of Polar Research, Tokyo: 103–120.

    Google Scholar 

  • Matsumoto, G., T. Torii & T. Hanya, 1982. Nutrient matters in saline lakes of McMurdo Oasis in the 1976–77 summer season. Antarct. Rec. 74: 109–118.

    Google Scholar 

  • Matsumoto, G., T. Torii & T. Hanya, 1984. Vertical distribution of organic constituents in an Antarctic lake: Lake Vanda. Hydrobiologia 111: 119–126.

    Google Scholar 

  • Meyer, G. H., M. B. Morrow, O. Wyss, T. E. Berg & J. Littlepage, 1962. Antarctica: the microbiology of an unfrozen saline pond. Science 138: 1103–1104.

    Google Scholar 

  • Mikell, A. T., B. C. Parker & G. M. Simmons, Jr., 1984. Response of an Antarctic lake heterotrophic community to high dissolved oxygen. Appl. envir. Microbiol. 47: 1062–1066.

    Google Scholar 

  • Pedrós-Alió, C & T. D. Brock, 1982. Assessing biomass and production of bacteria in eutrophic Lake Mendota, Wisconsin. Appl. envir. Microbiol. 44: 203–218.

    Google Scholar 

  • Siefert, E., R. L. Irgens & N. Pfennig, 1978. Phototrophic purple and green bacteria in a sewage treatment plant. Appl. envir. Microbiol. 35: 38–44.

    Google Scholar 

  • Sullivan, C. W. & A. C. Palmisano, 1984. Sea ice microbial communities: distribution, abundance, and diversity of ice bacteria in McMurdo Sound, Antarctica, in 1980. Appl. envir. Microbiol. 47: 788–795.

    Google Scholar 

  • Tezuka, Y., 1979. Distribution of sulfate-reducing bacteria and sulfide in aquatic sediments. Jap. J. Ecol. 29: 95–102.

    Google Scholar 

  • Torii, T., N. Yamagata, S. Nakaya, S. Murata, T. Hashimoto, O. Matsubaya & H. Sakai, 1975. Geochemical aspects of the McMurdo saline lakes with special emphasis on the distribution of nutrient matters. In T. Torii (ed.), Geochemical and Geophysical Studies of Dry Valleys, Victoria Land in Antarctica. Mem. natn. Inst. Polar Res., Spec. Issue 4. National Institute of Polar Research, Tokyo: 5–29.

    Google Scholar 

  • Trüper, H. G. & N. Pfennig, 1981. Characterization and identification of the anoxygenic phototrophic bacteria. In M. P. Starr et al. (eds.), The Prokaryotes, 1. Springer-Verlag, Berlin: 299–312.

    Google Scholar 

  • Vincent, W. F., M. T. Downes & C. L. Vincent, 1981. Nitrous oxide cycling in Lake Vanda, Antarctica. Nature 292: 618–620.

    Google Scholar 

  • Waguri, O., 1976. Isolation of microorganisms from salt lakes in the Dry Valley, Antarctica, and their living environment. Antarct. Rec. 57: 80–96.

    Google Scholar 

  • Wakao, N. & C. Furusaka, 1972. A new agar plate method for the quantitative study of sulfate-reducing bacteria in soil. Soil. Sci. Pl. Nutr. 18: 39–44.

    Google Scholar 

  • Watson, S. W., T. J. Novitsky, H. L. Quinby & F. W. Valois, 1977. Determination of bacterial number and biomass in marine environments. Appl. envir. Microbiol. 33: 940–946.

    Google Scholar 

  • Wright, S. W. & H. R. Burton, 1981. The biology of Antarctic saline lakes. Hydrobiologia 82: 319–338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takii, S., Konda, T., Hiraishi, A. et al. Vertical distribution in and isolation of bacteria from Lake Vanda: an Antarctic lake. Hydrobiologia 135, 15–21 (1986). https://doi.org/10.1007/BF00006454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00006454

Keywords

Navigation