Skip to main content
Log in

Seed coat structure and dormancy

  • Review
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

An understanding of dormancy mechanisms is of ecological and economic importance. Identification of the level at which dormancy is imposed appears to be species specific. The variation brought about by this therefore requires that developmental studies be included in seed coat dormancy experiments. In most cases, a site of permeability can be identified during the developmental process, and this information can be utilized later to remove dormancy. Under natural conditions, the removal of seed coat dormancy requires the interaction of a number of ecological and physiological dormancy-breaking cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aitken Y (1939) The problem of hard seeds in subterranean clover. Proc Royal Soc Vict 51: 187–213

    Google Scholar 

  2. Bell WE (1990) Aspects of the seed biology and control of Dichrostachys cinerea (L.) Wight et. Arn. M.Sc. Thesis, Botany Department, University of Natal, Pietermaritzburg

  3. Bell WE (1991) An investigation of the role of natural agents in the breakdown of seed dormancy in Dichrostachys cinerea (L.) Wight et. Arn, Proceedings South African Association of Botany Annual Congress, Pietermaritzburg

  4. Bell WE and Van Staden J (1992) Seed structure and germination of Dichrostachys cinerea. S Afr J Bot (in press)

  5. Bewley JD and Black M (1978) Physiology and Biochemistry of Seeds. Berlin: Springer-Verlag

    Google Scholar 

  6. Bhalla PL and Slattery MD (1984) Callose deposits make clover seeds impermeable to water. Ann Bot 53: 125–128

    Google Scholar 

  7. Blumenthal A, Lerner HR, Werker E and Poljakoff-Mayber A (1986) Germination preventing mechanisms in Iris seeds. Ann Bot 58: 551–561

    Google Scholar 

  8. Brits GJ (1987) Germination depth vs temperature requirements in naturally dispersed seeds of Leucospermum cordifolium and L. cuneiforme (Proteaceae). S Afr J Bot 53: 119–124

    Google Scholar 

  9. Brits GJ (1986) Influence of fluctuating temperatures and H2O2 treatment on germination of Leucospermum cordifolium and Serruria florida (Proteaceae) seeds. S Afr J Bot 52: 286–290

    Google Scholar 

  10. Brits GJ and Van Niekerk MN (1986) Effects of air temperature, oxygenation treatments and low storage temperature on seasonal germination response of Leucospermum cordifolium (Proteaceae) seeds. S Afr J Bot 52: 207–211

    Google Scholar 

  11. Clark WS, Beattie DJ and Arteca RN (1989) A growth inhibitor in Clematis viticella L. seeds. J Plant Physiol 134: 492–495

    Google Scholar 

  12. Corner EJH (1951) The Leguminous Seed. Phytomorphology 1: 117–121

    Google Scholar 

  13. Coughenour MB and Detling JK (1986) Acacia tortilis seed germination responses to water potential and nutrients. Afr J Ecol 24: 203–205

    Google Scholar 

  14. Dell B (1980) Structure and function of the strophiolar plug in seeds of Albizia lophantha. Amer J Bot 67: 556–563

    Google Scholar 

  15. Duke SH and Kakefuda G (1986) Role of the testa in preventing cellular rupture during imbibition of legume seeds. Plant Physiol 65: S139

    Google Scholar 

  16. Duran JM and Retama IN (1989) Seed coat structure and regulation of dormancy in Sinapsis arvensis L. seeds. J Plant Physiol 135: 218–222

    Google Scholar 

  17. Egley GM (1989) Water-impermeable seed coverings as barriers to germination. In: RB Taylorson, ed, Recent Advances in the Development and Germination of Seeds, 207–223. New York: Plenum Press

    Google Scholar 

  18. Egley GM and Paul RN (1981) Morphological observations on the early imbibition of water by Sida spinosa (Malvaceae) seeds. Amer J Bot 68: 1056–1065

    Google Scholar 

  19. Egley GM, Paul RN and Lax AR (1986) Seed coat imposed dormancy: Histochemistry of the region controlling onset of water entry into Sida spinosa seeds. Physiol Plant 67: 320–327

    Google Scholar 

  20. Egley GM, Paul RN, Vaughn KC and Duke SD (1983) Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L. Planta 157: 224–232

    Google Scholar 

  21. Evenari M, Koller D and Gutterman Y (1966) Effects of the environment of the mother plant on germination by control of seed-coat permeability to water in Ononis sicula Guss. Aust J Bot Sci 19: 1007–1016

    Google Scholar 

  22. Graaff JL and Van Staden J (1983) The effect of different chemical and physical treatments on seed coat structure and seed germination of Sesbania species. Z Pflanzenphysiol 112: 221–230

    Google Scholar 

  23. Graaff JL and Van Staden J (1984) The germination of two Sesbania species. S Afr J Bot 3: 59–62

    Google Scholar 

  24. Gutterman Y and Evenari M (1972) The influence of daylength on seed coat colour, an index of water permeability, of the desert annual Ononis sicula Guss. J Ecol 60: 713–719

    Google Scholar 

  25. Hamly DH (1932) Softening of seeds of Melilotus alba. Bot Gaz 93: 345–375

    Article  Google Scholar 

  26. Hanna PJ (1984) Anatomical features of the seed coat of Acacia kempeana (Mueller) which relate to increased germination rate induced by heat treatments. New Phytol 96: 23–29

    Google Scholar 

  27. Harris WM (1987) Comparative ultrastructure of developing seed coats of ‘hard-seeded’ and ‘soft-seeded’ varieties of soybean, Glycine max (L.) Merr. Bot Gaz 148: 324–331

    Article  Google Scholar 

  28. Hepher A and Roberts JA (1985) The control of seed germination in Trollius ledebouri. A model of seed dormancy. Planta 166: 321–328

    Google Scholar 

  29. Hyde ED (1954) The function of the hilum in some Papilionoideae in relation to the ripening of the seed and the permeability of the testa. Ann Bot 18: 241–256

    Google Scholar 

  30. Jain SK (1982) Variation and adaptive role of seed dormancy in some annual grassland species. Bot Gaz 143: 101–106

    Article  Google Scholar 

  31. Jones RM (1963) Preliminary studies of the germination of seed of Acacia cyclops and Acacia cyanophylla. SA J Sci 59: 296–298

    Google Scholar 

  32. Juntilla O (1973) The mechanism of low temperature dormancy in mature seeds of Syringa species. Plant Physiol 29: 256–268

    Google Scholar 

  33. Kelly KM and Van Staden J (1985) Effect of acid scarification on seed coat structure, germination and seedling vigour of Aspalathus linearis. J Plant Physiol 121: 37–45

    Google Scholar 

  34. Kelly KM and Van Staden J (1987) The lens as the site of permeability in the Papilionoid seed Aspalathus linearis. J Plant Physiol 128: 395–404

    Google Scholar 

  35. Kermode AR, Bewley JD, Dasgupta J and Misra S (1986) The transition from seed development to germination: A key role for desiccation? HortScience 21: 1113–1118

    Google Scholar 

  36. Khan MA and Ungar IA (1984) Seed polymorphism and germination responses to salinity stress in Atriplex triangularis Willd. Bot Gaz 145: 487–494

    Article  Google Scholar 

  37. Lagôa AMMA and Pereira MFA (1987) The role of the caruncle in the germination of seeds of Ricinus communis. Plant Phys Biochem 25: 125–128

    Google Scholar 

  38. Lang GA (1988) Dormancy: A new universal terminology. HortScience 22: 817–820

    Google Scholar 

  39. Lyshede OB (1984) Seed structure and germination in Cuscuta pedicellata with some notes on C. campestris. Nordic J Bot 4: 669–674

    Google Scholar 

  40. Manning JC and Van Staden J (1985) The development of the testa and tracheid bar in Erythrina lysistemon Hutch. (Leguminosae: Papilionoideae). Protoplasma 129: 157–167

    Google Scholar 

  41. Manning JC and Van Staden J (1987) The role of the lens in seed imbibition and seedling vigour of Sesbania punicea (Cav.) Benth. (Leguminosae: Papilionoideae). Ann Bot 59: 705–713

    Google Scholar 

  42. Murray DR (1987) Nutritive role of seed coats in developing seeds. Am J Bot 74: 1122–1137

    Google Scholar 

  43. Nikolaeva MG (1977) Factors controlling the seed dormancy pattern. In: AA Khan, ed, The Physiology and Biochemistry of Seed Dormancy and Germination, 51–74. Amsterdam: Elsevier/North Holland Biomedical Press

    Google Scholar 

  44. Nooden LD, Blakely KA and Grzybvowski JM (1985) Control of seed coat thickness in soybean. Plant Physiol 79: 543–545

    Google Scholar 

  45. Peña J, Aparicio-Tejo P and Sanchez-Diaz M (1988) Dormancy mechanisms and the effect of scarification in the germination of Halimium halimifolium seeds. J Plant Physiol 132: 54–58

    Google Scholar 

  46. Pérez-Garcia F and Pita JM (1989) Mechanical resistance of the seed coat during germination of Onopordum nervosum Boiss. Seed Sci Technol 17: 277–282

    Google Scholar 

  47. Pinfield NJ and Dungey NO (1985) Seed dormancy in Acer: An assessment of the role of the structures covering the embryo. J Plant Physiol 120: 65–81

    Google Scholar 

  48. Pinfield NJ and Stutchbury PA (1990) Seed Dormancy in Acer: The role of testa-imposed and embryo dormancy in Acer velutinum. Ann Bot 66: 133–137

    Google Scholar 

  49. Pinfield NJ, Bazaid SA and Gwarazimba VEE (1989) The development of embryo dormancy and testa-imposed dormancy during seed ontogeny in the genus Acer. J Plant Physiol 136: 746–749

    Google Scholar 

  50. Pinfield NJ, Stutchbury PA, Bazaid SA and Gwarazimba VEE (1989) Seed dormancy in Acer: The relationship between seed dormancy, embryo dormancy and ABA in Acer platanoides L. J Plant Phys 135: 313–318

    Google Scholar 

  51. Ramgaswamy NC and Nandakumar L (1985) Correlative studies on seed coat structure, chemical composition, and impermeability in the legume Rhynchosia minima. Bot Gaz 146: 501–509

    Article  Google Scholar 

  52. Riggio Bevilacqua LR, Roti-Michelozzi G and Serrato G (1984) Water entry in Cercis siliquastrum (Leguminosae) seeds. Nordic J Bot 4: 675–679

    Google Scholar 

  53. Riggio Bevilacqua LR, Fossati F and Dondero G (1987) “Callose” in the impermeable seed coat of Sesbania punicea. Ann Bot 59: L335–341

    Google Scholar 

  54. Riggio Bevilacqua LR, Roti-Michelozzi G and Modenesi P (1989) The watertight dormancy of Melilotus alba seeds. Can J Bot 67: 3453–3456

    Google Scholar 

  55. Roti-Michelozzi G, Serrato G and Riggio Bevilacqua L (1987) Remnants of the inner integument as the major barrier to water entry in Cercis siliquastrum L. seed. Phytomorphology 37: 165–171

    Google Scholar 

  56. Santos DSB and Pereira MFA (1989) Restrictions of the integument to the germination of Beta vulgaris L. seeds. Seed Sci Tech 17: 601–611

    Google Scholar 

  57. Serrato Valenti G, Ferro M and Modenesi P (1990) Structural and histochemical changes in palisade cells of Prospis juliflora seed coat in relation to its water permeability. Ann Bot 65: 529–532

    Google Scholar 

  58. Serrato Valenti G, Melone L, Ferro M and Bozzini A (1989) Comparative studies on testa structure of ‘hard-seeded’ and ‘soft seeded’ varieties of Lupinus augustifolius L. (Leguminosae) and on mechanisms of water entry. Seed Sci Technol 17: 563–581

    Google Scholar 

  59. Schulz D, Bachthaler E and Kunz U (1991) Aufbau der Testa bei Pelargonium zonale-Samen. Gartenbauwissenschaft 56: 118–126

    Google Scholar 

  60. Slingsbury P and Bond WJ (1985) The influence of ants on the dispersal distance and seedling recruitment of Leucospermum conocarpodendron (L.) Buek (Proteaceae). S Afr J Bot 51: 30–34

    Google Scholar 

  61. Simpson GM (1990) Seed dormancy in grasses. Cambridge University Press, Cambridge

    Google Scholar 

  62. Styer RC and Cantliffe DJ (1983) Changes in seed structure and composition during development and their effects on leakage in two endosperm mutants of sweet corn. J Amer Soc Hort Sci 108: 721–728

    Google Scholar 

  63. Tran VN and Cavanagh AK (1984) Structural aspects of seed dormancy. In: DR Murray, ed, Seed Physiology Vol 2: Germination and Reserve Mobilization, 1–44. Orlando: Academic Press

    Google Scholar 

  64. Van Staden J and Brown NAC (1973) The role of the covering structures in the germination of seed of Leucospermum cordifolium (Proteaceae). Aust J Bot 21: 189–192

    Google Scholar 

  65. Van Staden J, Manning JC and Dickens CWS (1987) A phylogenetic analysis of the role of plant hormones in the development and germination of legume seeds. In: CH Stirton, ed, Advances in Legume Systematics, Part 3, 387–442. Kew: Royal Botanic Gardens

    Google Scholar 

  66. Van Staden J, Manning JC and Kelly KM (1989) Legume seeds — the structure: function equation. In: CH Stirton and JL Zarucchi, eds, Advances in Legume Biology. Monogr Syst Bot Missouri Bot Garden 29: 417–450

  67. Watkins JT and Cantliffe DJ (1983) Hormonal control of pepper seed germination. HortScience 18: 342–343

    Google Scholar 

  68. Werker E (1980/81) Seed dormancy as explained by the anatomy of embryo envelopes. Isr J Bot 29: 22–44

    Google Scholar 

  69. Werker E, Marbach I and Mayer AM (1979) Relation between the anatomy of the testa, water permeability and the presence of phenolics in the genus Pisum. Ann Bot 43: 765–771

    Google Scholar 

  70. Wolf WJ and Baker FL (1981) Scanning electron microscopy of soybeans. Cereal Sci Today 17: 124–130, 147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, K.M., Van Staden, J. & Bell, W.E. Seed coat structure and dormancy. Plant Growth Regul 11, 201–209 (1992). https://doi.org/10.1007/BF00024559

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024559

Key words

Navigation