Skip to main content
Log in

Elastic constants and velocity surfaces of indurated anisotropic shales

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The velocities of two Devonian-Mississippian shales have been measured to confining pressures of 200 MPa in a laboratory study of anisotropy and wave propagation. Both samples were found to be transversely isotropic at elevated pressures with the main symmetry axis perpendicular to bedding. The elastic constants of the shales were used to calculate phase and group velocity surfaces as a function of angle to the bedding normal. Multiple velocity measurements in non-symmetry directions, not undertaken in previously published studies of shales, have been used to confirm features observed on calculated velocity surfaces. It is demonstrated that velocities measured in non-symmetry directions are phase velocities. Group velocities were found to be significantly lower than the corresponding phase velocities of the shales due to their high anisotropies. Shear wave splitting was found to be negligible for propagation directions within approximately 30° of the bedding normals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov, K.S. and Ryzhova, T.V.: 1961, ‘Elastic Properties of Rock-Forming Minerals, 1, Pyroxenes and Amphiboles’,Bull. Acad. Sci. USSR, Geophys. Ser., English Trans. 9, 1165–1168.

    Google Scholar 

  • Auld, B.A.: 1990,Acoustic Fields and Waves in Solids, Vol. 1, Robert E. Krieger Pub. Co., Malabar, Florida.

    Google Scholar 

  • Babuska, V.: 1972, ‘Elasticity and Anisotropy of Dunite and Bronzitite’,J. Geophys. Res. 77, 6955–6965.

    Google Scholar 

  • Baker, D.W. and Carter, N.L.: 1972, ‘Seismic Velocity Anisotropy Calculated for Ultramafic Minerals and Aggregates’,Am. Geophys. U. Mon. 16, 157–166.

    Google Scholar 

  • Banik, N.C.: 1984, ‘Velocity Anisotropy of Shales and Depth Estimation in the North Sea Basin’,Geophysics 49, 1411–1419.

    Google Scholar 

  • Birch, F.: 1960, ‘The Velocity of Compressional Waves in Rocks to 10 Kilobars, 1’,J. Geophys. Res. 65, 1083–1102.

    Google Scholar 

  • Brocher, T. M. and Christensen, N.I.: 1990, ‘Seismic Anisotropy Due to Preferred Mineral Orientation Observed in Shallow Crustal Rocks in Southern Alaska’,Geology 18, 737–740.

    Google Scholar 

  • Carrion, P., Costa, J., Pinheiro, J.E.F. and Schoenberg, M.: 1992, ‘Cross-Borehole Tomography in Anisotropic Media’,Geophysics 57, 1194–1198.

    Google Scholar 

  • Cheadle, S.P., Brown, R.J. and Lawton, D.C.: 1991, ‘Orthorhombic Anisotropy: A Physical Seismic Modeling Study’,Geophysics 56, 1603–1613.

    Google Scholar 

  • Christensen, N.I.: 1966, ‘Elasticity of Ultrabasic Rocks’,J. Geophys. Res. 71, 5921–5932.

    Google Scholar 

  • Christensen, N. I. and Ramananantoandro, R.: 1971, ‘Elastic Moduli and Anisotropy of Dunite to 10 Kilobars’,J. Geophys. Res. 76, 4003–4010.

    Google Scholar 

  • Christensen, N.I.: 1984, ‘The Magnitude, Symmetry, and Origin of Upper Mantle Anisotropy Based on Fabric Analyses of Ultramafic Tectonites’,Geophys. J. R. astr. Soc. 76, 89–111.

    Google Scholar 

  • Christensen, N.I.: 1985, ‘Measurements of Dynamic Properties of Rock at Elevated Temperatures and Pressures’, in H.J. Pincus and E. R. Hoskins (eds.),Measurements of Rock Properties at Elevated Temperatures and Pressures, American Society for Testing and Materials, Philadelphia, Pa., pp 93–107.

    Google Scholar 

  • Crampin, S.: 1985, ‘Evaluation of Anisotropy by Shear Wave Splitting’,Geophysics 50, 142–152.

    Google Scholar 

  • Crosson, R. L. and Lin, J.W.; 1971, ‘Voigt and Reuss Prediction of Anisotropy Elasticity of Dunite’,J. Geophys. Res. 76, 570–578.

    Google Scholar 

  • Dellinger, J. and Vernik, L.: 1992, ‘Do Core Sample Measurements Record Phase or Group Velocity?’,62nd. Ann. Internat. Mtg., Soc. Explor. Geophys. Expanded Abstracts, 662–665.

  • Eaton, D.W.: 1993, ‘Discussion of “Ultrasonic Velocity and Anisotropy of Hydrocarbon Source Rocks” by Vernik, L. and Nur, A.’,Geophysics 58, 758–759.

    Google Scholar 

  • Harder, S.: 1985, ‘Inversion of Phase Velocities for the Anisotropic Elastic Tensor’,J. Geophys. Res. 90, 10,275–10,280.

    Google Scholar 

  • Hearmon, R.F.S.: 1961,An Introduction to Applied Anisotropic Elasticity, Oxford University Press, Oxford.

    Google Scholar 

  • Hess, H.H.; 1964, ‘Seismic Anisotropy of the Uppermost Mantle Under Oceans’,Nature 203, 629–631.

    Google Scholar 

  • Johnston, J.E. and Christensen, N.I.: 1992, ‘Shear Wave Reflectivity, Anisotropies, Poisson's Ratios, and Densities of a Southern Appalachian Paleozoic Sedimentary Sequence’,Tectonophysics 210, 1–20.

    Google Scholar 

  • Jones, L.E.A. and Wang, H.F.: 1981, ‘Ultrasonic Velocities in Cretaceous Shales from the Williston Basin’,Geophysics 46, 288–297.

    Google Scholar 

  • Justice, M.G., McCormack, M.D. and Lee, S.S.: 1986, ‘Anisotropy in the Morrow Formation of Southeast New Mexico’, in S.H. Danboom and S.N. Domenico (eds.),Shear Wave Exploration, Society of Exploration Geophysicists Geophysical Development Series, 1, pp. 154–164.

  • Kumazawa, M.: 1969, ‘The Elastic Constants of Single Crystal Orthopyroxene’,J. Geophys. Res. 74, 5973–5980.

    Google Scholar 

  • Lo, T., Coyner, K.B. and Toksoz, M.N.: 1986, ‘Experimental Determination of Elastic Anisotropy of Berea Sandstone, Chicopee Shale, and Chelmsford Granite’,Geophysics 51, 164–171.

    Google Scholar 

  • Lynn, H.B., and Thomsen L.A.: 1990, ‘Reflection Shear Wave Data Collected Near the Principal Axes of Azimuthal Anisotropy’,Geophysics 55, 147–156.

    Google Scholar 

  • McCormack, M.D., Dunbar, J.A. and Sharp, W.W.: 1984, ‘A Case Study of Stratigraphic Interpretation Using Shear and Compressional Seismic Data’,Geophysics 49, 509–520.

    Google Scholar 

  • Musgrave, M.J.P.: 1970,Crystal Acoustics, Holden Day, San Francisco.

    Google Scholar 

  • Pacalo, R.E.G., Weidner, D.J. and Gasparik, T.: 1992, ‘Elastic Properties of Sodium-Rich Majorite Garnet’,Geophys. Res. Lett. 19, 1895–1898.

    Google Scholar 

  • Sano, O., Kudo, Y. and Mizuta, Y.: 1992, ‘Experimental Determination of Elastic Constants of Oshima Granite, Barre Granite, and Chelmsford Granite’,J. Geophys. Res. 97, 3367–3379.

    Google Scholar 

  • Seront, B., Mainprice, D. and Christensen, N. I.: 1993, ‘A Determination of the Three Dimensional Seismic Properties of Anorthosite: Comparison Between Values Calculated from the Petrofabric and Direct Laboratory Measurements’,J. Geophys. Res. 98, 2209–2221.

    Google Scholar 

  • Thomsen, L.: 1986, ‘Weak Elastic Anisotropy’,Geophysics 51, 1954–1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, J.E., Christensen, N.I. Elastic constants and velocity surfaces of indurated anisotropic shales. Surv Geophys 15, 481–494 (1994). https://doi.org/10.1007/BF00690171

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690171

Key words

Navigation