Skip to main content
Log in

Structural instability of 297 element in Drosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

297 element Southern pattern modifications previously detected in mutation accumulation lines of Drosophila melanogaster were further investigated by in situ hybridisation, Southern blotting with different combinations of genomic digest-probe, and PCR. Only one out of the nine pattern modifications studied could be interpreted as an excision and was detectable by in situ hybridisation to polytene chromosomes. Results were consistent with most pattern modifications being small rearrangements within the body of the element. In agreement with the existence of spontaneous rearrangements of this kind is the observation that many genomic copies of element 297 are defective and these are not limited to heterochromatin. These findings have important implications for the models of transposable element (TE) number regulation as well as for the study of genome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albornoz J. and Domínguez A.: Spontaneous changes in Drosophila melanogater transposable elements and their effects on fitness, Heredity 83 (1999) (in press).

  • Biemont C., Aouar A. and Arnault C.: Genome reshuffling of the copia element in an inbred line of Drosophila melanogaster, Nature 329 (1987): 742–744.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield J.F. and Badge R.M.: Population genetics models of transposable elements, Genetica 100 (1997): 281–294.

    Article  PubMed  CAS  Google Scholar 

  • Caballero A., Toro M.A. and López-Fanjul C.: The response to artificial selection from new mutations in Drosophila melanogaster, Genetics 127 (1991): 89–102.

    Google Scholar 

  • Charlesworth B., Jane P. and Assimacopoulos S.: The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin, Genet. Res. 64 (1994): 183–197.

    PubMed  CAS  Google Scholar 

  • Charlesworth B., Lapid A. and Canada D.: The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. I. Element frequencies and distribution, Genet. Res. 60 (1992): 103–114.

    PubMed  CAS  Google Scholar 

  • Cizeron G. and Biémont C.: Polymorphism in structure of the retrotransposable element 412 on Drosophila simulans and D. melanogaster populations, Gene 232 (1999): 183–190.

    Article  PubMed  CAS  Google Scholar 

  • Davis P.S., Shen M.W. and Judd B.H.: Asymmetrical pairings of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products, Proc. Nat. Acad. Sci. USA 84 (1987): 174–178.

    Article  PubMed  CAS  Google Scholar 

  • DiFranco C., Galuppi D. and Junakovic N.: Genomic distribution of transposable elements among individuals of an inbred Drosophila line, Genetica 86 (1992): 1–11.

    Article  CAS  Google Scholar 

  • Di Franco C., Pisano C., Dimitri P., Gigliotti S. and Junakovic N.: Genomic distribution of copia-like transposable elements in somatic tissues and during development of Drosophila melano-gaster, Chromosoma 98 (1989) 402–410.

    Article  PubMed  CAS  Google Scholar 

  • Di Franco C., Pisano C., Fourcade-Peronnet F., Echalier G. and Junakovic N.: Evidence for De Novo rearrangements of Drosophila transposable elements induced by the passage to cell culture, Genetica 87 (1992): 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Dimitri P.: Constitutive heterochromatin and transposable elements in Drosophila melanogaster, Genetica 100 (1997): 85–93.

    Article  PubMed  CAS  Google Scholar 

  • Domínguez A. and Albornoz J.: Rates of movement of transposable elements in Drosophila melanogaster, Mol. Gen. Genet. 251 (1996): 130–138.

    PubMed  Google Scholar 

  • Drake J.W., Charlesworth B., Charlesworth D. and Crow J.F.: Rates of Spontaneous Mutation, Genetics 148 (1998): 1667–1686.

    PubMed  CAS  Google Scholar 

  • Eggleston W.B., Johnson Schlitz D.M. and Engels W.R.: P-M hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster, Nature 331 (1998): 368–370.

    Article  Google Scholar 

  • Engels W.: Amplify 1.2. University of Wisconsin, Madison, WI, 1997.

    Google Scholar 

  • Engels W.R.: P elements in Drosophila, Transposable elements. In: Saedler H. and Gierl A. (eds). Springer-Verlag, Berlin, 1996.

    Google Scholar 

  • Finnegan D.J.: The I factor and I-R hybrid dysgenesis in Drosophila melanogaster. In: Berg D. and Howe M. (eds), Mobile DNA. The American Society for Microbiology, Wasington, 1989a; pp. 503–518.

    Google Scholar 

  • Finnegan D.J.: Eukaryotic transposable elements and genome evolution. Trend. Genet. 5 (1989b): 103–107.

    Article  CAS  Google Scholar 

  • Finnegan D.J., Rubin G.M., Young M.W. and Hogness D.S.: Repeated gene families in Drosophila melanogaster, Cold Spring Harbor Symp. Quant. Biol. 42 (1978): 1053–1063.

    PubMed  CAS  Google Scholar 

  • FlyBase: The Drosophila genetic database, Nucleic Acids Res. 22 (1994): 3456–3458.

    Google Scholar 

  • Gerasimova T.I., Ilyin Y.V., Mizrokhi L.J., Semjonova L.V. and Georgiev G.P.: Mobilization of the transposable element mdg4 by hybrid dysgenesis generates a family of unstable cut mutations in D. melanogaster, Mol. Gen. Genet. 193 (1984): 488–492.

    Article  CAS  Google Scholar 

  • Goldberg M.L., Sheen J-Y., Gehring W.J. and Green M.M.: Unequal crossing-over associated with asymmetrical synapsis between nomadic elements in the Drosophila melanogaster genome, Proc. Nat. Acad. Sci USA 80 (1983): 5017–5021.

    Article  PubMed  CAS  Google Scholar 

  • Harada K., Yukuhiro K. and Mukai T.: Transposition rates of movable genetic elements in Drosophila melanogaster, Proc. Nat. Acad. Sci USA 87 (1990): 3248–3252.

    Article  PubMed  CAS  Google Scholar 

  • Hartl D.L., Lozovskaya E.R., Nursminsky D.I. and Lohe A.R.: What restricts the activity of mariner-like transposable elements? Trend. Genet. 13 (1997): 197–201.

    Article  CAS  Google Scholar 

  • Inouye S., Yuki S. and Saigo K.: Complete nucleotide sequence and genome organization of a Drosophila transposable genetic element, 297, Eur. J. Biochem. 154 (1986): 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Junakovic N., Caneva R. and Ballario P.: Genomic distribution of copia-like elements in laboratory stocks of Drosophila melanogaster, Chromosoma 90 (1984): 378–382.

    Article  CAS  Google Scholar 

  • Junakovic N., Di Franco C. and Terrinoni A.: Evidence for a host role in regulating the activity of transposable elements in Drosophila melanogaster: the case of the persistent instabily of Bari 1 elements in Charolles stock, Genetica 100 (1997): 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Kim A.I. and Belyaeva E.S.: Transposition of mobile elements gypsy (mdg-4) and hobo in germ-line and somatic cells of a genetically unstable mutator strain of D. melanogaster, Mol. Gen. Genet. 212 (1988): 281–286.

    Article  Google Scholar 

  • Lim J.K.: In situ hybridization with biotinylated DNA, D.I.S. 72 (1993): 73–76.

    Google Scholar 

  • Mevel-Ninio M., Mariol M.C. and Gans M.: Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovo super(D) dominant female-sterile mutations: Molecular analysis of revertant alleles, EMBO J. 8 (1989): 1549–1558.

    PubMed  CAS  Google Scholar 

  • NCSA: NCSA GelReader for the Macintosh 2.0.5. University of Illinois at Urbana-Champaign, IL, 1991.

    Google Scholar 

  • Nuzhdin S.V. and Mackay T.F.C.: Direct determination of retro-transposon transposition rates in Drosophila melanogaster, Genet. Res. 12 (1994): 139–144.

    Article  Google Scholar 

  • Pasyukova E.G. and Nuzhdin S.V.: Doc and copia instability in an isogenic Drosophila melanogaster stock, Mol. Gen. Genet. 240 (1993): 302–306.

    Article  PubMed  CAS  Google Scholar 

  • Pelisson A., Teyset I., Chalvet F., Kim A., Prud'homme N. and Terzian C.: About the origin of retroviruses and the co-evolution of the gypsy retrovirus with the Drosophila flamenco host gene, Genetica 100 (1997): 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Petrov D.A., Lozovskaya E.R. and Hartl D.L.: High intrinsic rate of DNA loss in Drosophila, Nature 384 (1996): 346–349.

    Article  PubMed  CAS  Google Scholar 

  • Santiago E., Albornoz J., Domínguez A., Toro M.A. and López-Fanjul C.: The distribution of spontaneous mutations on quantitative traits and fitness in Drosophila melanogaster, Genetics 132 (1992): 771–781.

    PubMed  CAS  Google Scholar 

  • Vieira C. and Biemont C.: Transposition rate of the 412 retro-transposable element is independent of copy number in natural populations of Drosophila simulans, Mol. Biol. Evol. 14 (1997): 185–188.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez, A., Albornoz, J. Structural instability of 297 element in Drosophila melanogaster. Genetica 105, 239–248 (1999). https://doi.org/10.1023/A:1003957606743

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003957606743

Navigation