Skip to main content
Log in

Enigma of Y chromosome degeneration: Neo-Y and Neo-X chromosomes of Drosophila miranda a model for sex chromosome evolution

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Y chromosome degeneration is characterized by structural changes in the chromosome architecture and expansion of genetic inertness along the Y chromosome. It is generally assumed that the heteromorphic sex chromosome pair has developed from a pair of homologues. Several models have been suggested. We use the unique situation of the secondary sex chromosome pair, neo-Y and neo-X (X2), in Drosophila miranda to analyze molecular mechanisms involved in the evolutionary processes of Y chromosome degeneration. Due to the fusion of one of the autosomes to the Y chromosome (about 2 Mya), a neo-Y chromosome and a neo-X chromosome, designated X2, were formed. Thus, formerly autosomal genes are inherited now on a pair of sex chromosomes in D. miranda. Analyzing DNA sequences from the X2 and neo-Y region, we observed a massive accumulation of DNA insertions on the neo-Y chromosome. From the analysis of several insertion elements, we present compelling evidence that the first step in Y chromosome degeneration is driven by the accumulation of transposable elements, especially retrotransposons. An enrichment of these elements along an evolving Y chromosome could account for the switch from a euchromatic into a heterochromatic chromatin structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrio, E., A. Latorre, A. Moya & F.J. Ayala, 1992. Phylogenetic reconstruction of the Drosophila obscura group, on the basis of mitochondrial DNA. Mol. Biol. Evol. 9: 621-635.

    PubMed  CAS  Google Scholar 

  • Bone, R.J. & M.I. Kuroda, 1996. Dosage compensation regulatory proteins and the evolution of sex chromosomes in Drosophila. Genetics 144: 705-713.

    PubMed  CAS  Google Scholar 

  • Bull, J.J., 1983. Evolution of Sex Determining Mechanisms, pp.248- 269. Benjamin/ Cummings, Menlo Park, CA.

    Google Scholar 

  • Charlesworth, B., 1978. A model for the evolution of Y chromosomes and dosage compensation. Proc. Natl. Acad. Sci. USA 75: 5618- 5622.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, D. & B. Charlesworth, 1979. The evolutionary genetics of sexual systems in flowering plants. Proc. R. soc. Lond. B 205: 513-530.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, D. & B. Charlesworth, 1980. Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. Genet. Res. 35: 205-214.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1991. The evolution of sex chromosomes. Science 251: 1030-1033.

    PubMed  CAS  Google Scholar 

  • Chalesworth, B., P. Sniegowski & W. Stephan, 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215-220.

    Article  Google Scholar 

  • Charlesworth, B., 1996. The evolution of chromosomal sex determination and dosage compensation. Current Biology 6: 149-162.

    Article  PubMed  CAS  Google Scholar 

  • Dobzhansky, Th., 1935. Drosophila miranda, a new species. Genetics 20: 377-391.

    PubMed  CAS  Google Scholar 

  • Ganguly, R., K.D. Swanson, K. Ray & R. Krishnan, 1992. A BamHI repeat element is predominantly associated with the degenerating neo-Y chromosome of Drosophila miranda but absent in the Drosophila melanogaster genome. Proc. Natl. Acad. Sci. USA 89: 1340-1344.

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow, P.N. & R. Lovell-Badge, 1993. SRY and sex determination in mammals. Annu. Rev. Genet. 27: 71-92.

    Article  PubMed  CAS  Google Scholar 

  • Kraemer, C. & E.R. Schmidt, 1993. The sex-determining region of Chironomus thummi is associated with highly repetitive DNA and transposable elements. Chromosoma 102: 553-562.

    Article  PubMed  CAS  Google Scholar 

  • Langley, C.H., E. Montgomery, R. Hudson, N. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52: 223-235.

    Article  PubMed  CAS  Google Scholar 

  • Lucchesi, J.C., 1978. Gene dosage compensation and the evolution of sex chromosomes. Science 202: 711-716.

    PubMed  CAS  Google Scholar 

  • Lucchesi, J.C., 1994. The evolution of heteromorphic sex chromosomes. BioEssays 16: 81-83.

    Article  PubMed  CAS  Google Scholar 

  • Lucchesi, J. C., 1996. Dosage compensation in Drosophila and the ‘complex’ world of transcriptional regulation. BioEssays 18: 541-547.

    Article  PubMed  CAS  Google Scholar 

  • MacKnight, R. H., 1939. The sex-determining mechanism of Drosophila miranda. Genetics 24: 180-201.

    PubMed  CAS  Google Scholar 

  • Marin, I., A. Franke, G. J. Bashaw & B. S. Baker, 1996. The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature 383: 160-163.

    Article  PubMed  CAS  Google Scholar 

  • McClung, C.E., 1902. The accessory chromosome-sex determinant? Biol. Bull.3: 43-84.

    Google Scholar 

  • Muller, H.J., 1918. Genetic variability, twin hybrids and constant hybrids, a case of balanced lethal factors. Genetics 3: 422-499.

    PubMed  CAS  Google Scholar 

  • Muller, H.J., 1932. Some genetic aspects of sex. Am. Nat. 66: 118- 138.

    Article  Google Scholar 

  • Muller, H.J., 1940. Bearings of the Drosophila work on systematics pp.185-268 in I. Huxley. The New Systematics edited by Oxford, Oxford University Press.

    Google Scholar 

  • Nei, M., 1970. Accumulation of nonfunctional genes on sheltered chromosomes. Am. Nat. 104, 311-322.

    Article  Google Scholar 

  • Patterson, J.T. & W.S. Stone, 1952. Evolution in the genus Drosophila. New York, The Macmillan Company.

    Google Scholar 

  • Pimpinelli, S., M. Berloco, L. Fanti, P. Dimitri, S. Bonaccorsi, E. Marchetti, R. Caizzi, C. Caggese & M. Gatti, 1995. Transposable elements are stable structural component of Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. USA 92: 3804-3808

    Article  PubMed  CAS  Google Scholar 

  • Rice, W.R., 1987. Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics 116: 161-167.

    PubMed  CAS  Google Scholar 

  • Rice, W.R., 1994. Degeneration of a non-recombining chromosome. Science 263: 230-232.

    PubMed  CAS  Google Scholar 

  • Russo, C.A.M, N. Takezaki & M. Nei, 1995. Molecular phylogeny and divergence times of Drosophilid species. Mol. Biol. Evol. 12: 391-404.

    PubMed  CAS  Google Scholar 

  • Spradling, A.C., 1994. Transposable elements and the evolution of heterochromatin, pp. 69-83 in Molecular Evolution of Physiological Processes, edited by D. Fambrough. Rockefeller University Press, New York.

    Google Scholar 

  • Steinemann, M., 1982. Multiple sex chromosomes in Drosophila miranda: A system to study the degeneration of a chromosome. Chromosoma 86: 59-76.

    Article  PubMed  CAS  Google Scholar 

  • Steinemann, M., 1984. Telomere repeats within the neo-Y-chromosome of Drosophila miranda. Chromosoma 90: 1-5.

    Article  Google Scholar 

  • Steinemann, M. & S. Steinemann, 1990. Evolutionary changes in the organization of the major LCP gene cluster during sex chromosomal differentiation in the sibling species Drosophila persimilis, D. pseudoobscura and D. miranda. Chromosoma 99: 424-431.

    Article  CAS  Google Scholar 

  • Steinemann, M. & S. Steinemann, 1991. Preferential Y chromosomal location of TRIM, a novel transposable element of Drosophila miranda, obscura group. Chromosoma 101: 169-179.

    Article  PubMed  CAS  Google Scholar 

  • Steinemann, M. & S. Steinemann, 1992. Degenerating Y chromosome of Drosophila miranda: A trap for retrotransposons. Proc. Natl. Acad. Sci. USA 89: 7591-7595.

    Article  PubMed  CAS  Google Scholar 

  • Steinemann, M., S. Steinemann & F. Lottspeich, 1993. How Y chromosomes become genetically inert. Proc. Natl. Acad. Sci. USA 90: 5737-5741.

    Article  PubMed  CAS  Google Scholar 

  • Steinemann, M. & S. Steinemann, 1993. A duplication including the Y allele of Lcp2 and the TRIM retrotransposon at the Lcp locus on the degenerating neo-Y chromosome of Drosophila miranda: Molecular structure and mechanisms by which it may have arisen. Genetics 134: 497-505.

    PubMed  CAS  Google Scholar 

  • Steinemann, M., S. Steinemann & B. M. Turner, 1996. Evolution of dosage compensation. Chromosome Research 4: 185-190.

    Article  PubMed  CAS  Google Scholar 

  • Steinemann, M. & S. Steinemann, 1997. The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the neo-Y chromosome of Drosophila miranda. Genetics 145: 261-266.

    PubMed  CAS  Google Scholar 

  • Stevens, N.M., 1905. Studies in spermatogenesis with especial reference to the ‘accessory chromosome’. Carn. Inst. Wash. Publ. Washington, D.C. 36: 3-32.

    Google Scholar 

  • White, M.J.D., 1973. Sex chromosomes, pp. 129-146 in The Chromosomes, 6th edition. Chapman and Hall, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinemann, M., Steinemann, S. Enigma of Y chromosome degeneration: Neo-Y and Neo-X chromosomes of Drosophila miranda a model for sex chromosome evolution. Genetica 102, 409–420 (1998). https://doi.org/10.1023/A:1017058119760

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017058119760

Navigation