Skip to main content
Log in

Evidence for a host role in regulating the activity of transposable elements in Drosophila melanogaster: the case of the persistent instability of Bari 1 elements in Charolles stock

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In most reports in which the activity of numerous Drosophila transposon families has been studied, only a subset of the families tested appears mobile. A comparison of these data shows that there are no transposons inherently more unstable than others and suggests that host factors regulate the activity of transposable elements. Consistent with this conclusion are the properties of Bari 1 elements, which are the only ones of the 14 families tested to be unstable in Charolles stock. Instability is persistent over 53 generations and appears to affect recurrent insertion sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biémont, C., A. Aouar & C. Arnault, 1987. Genome reshuffling of the copia element in an inbred line of Drosophila melanogaster. Nature 329: 742–744.

    Article  PubMed  Google Scholar 

  • Caizzi, R., C. Caggese & S. Pimpinelli, 1992. Bari 1, a new transposon-like family in Drosophila melanogaster with unique heterochromatic organization. Genetics 133: 335–345.

    Google Scholar 

  • Caggese, C., S. Pimpinelli, P. Barsanti & R. Caizzi, 1995. The distribution of the transposable element Bari 1 in the Drosophila melanogaster and Drosophila simulans genome. Genetica 96: 269–283.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., P. Sniegowski & W. Stephan, 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Clark, D.J., V.W. Bilanchone, L.J. Haywood, S.L. Dildine & S.B. Sandmayer, 1988. A Yeast sigma composite element, Ty3, has properties of a retrotransposon. J. Biol. Chem. 263: 1413–1423.

    PubMed  CAS  Google Scholar 

  • Chalker, D.L. & S.B. Sandmayer, 1990. Transfer RNA genes are genomic targets for de novo transposition of the yeast retrotransposon Ty3. Genetics 126: 837–850.

    PubMed  CAS  Google Scholar 

  • Di Franco, C., D. Galuppi & N. Junakovic, 1992. Genomic distribution of transposable elements among individuals of an inbred Drosophila line. Genetica 86: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Di Franco, C., A. Terrinoni, D. Galuppi & N. Junakovic, 1995. DNA extraction from Drosophila individual flies. DIS 76: 172–174.

    Google Scholar 

  • Di Franco, C., A. Terrinoni, P. Dimitri & N. Junakovic, 1997. Intragenomic distribution and stability of transposable elements in euchromatin and heterochromatin of Drosophila melanogaster: elements with inverted repeats Bari 1, hobo and pogo. J. Mol. Evol. 45: 247–252.

    Article  PubMed  CAS  Google Scholar 

  • Dominguez, A. & J. Albornoz, 1996. Rates of movement of trans-posable elements in Drosophila melanogaster. Mol. Gen. Genet. 251: 130–138.

    PubMed  CAS  Google Scholar 

  • Eggleston, W.B., D.M. Johnson-Shlitz & W.R. Engels, 1988. P-M hybrid dysgenesis does not mobilize other transposable element families in Drosophila melanogaster. Nature 331: 368–370.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, R.A., 1958. The general theory of natural selection. Dover Publications Inc., New York, pp. 80–90.

    Google Scholar 

  • Harada, K., K. Yukuhiro & T. Mukai, 1990. Transposition rates of movable genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. 87: 3248–3552.

    Article  PubMed  CAS  Google Scholar 

  • Jack, J.W., 1985. Molecular organization of the cut locus of Drosophila melanogaster. Cell 42: 869–876.

    Article  PubMed  CAS  Google Scholar 

  • Ji, H., D.P. Moore, M.A. Blomberg, D.F. Braiterman, D.F. Voytas, G. Natsoulis & J.D. Boeke, 1993. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73: 1007–1018.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A.I., E.S. Belyaeva & M.M. Aslanyan, 1990. Autonomous transposition of gypsy mobile elements and genetic instability in Drosophila melanogaster. Mol. Gen. Genet. 224: 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A.I., N.V. Lyubomirskaya, E.S. Belyaeva, N.G. Shostack & Y.V. Ilyin, 1994. The introduction of a transpositionally active copy of retrotransposon gypsy into the Stable Strain of Drosophila melanogaster causes genetic instability. Mol. Gen. Genet. 242: 472–477.

    Article  PubMed  CAS  Google Scholar 

  • Mevel-Ninio, M., M.C. Mariol & M. Gans, 1989. Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovo D dominant sterile mutations: molecular analysis of the revertant allelles. EMBO J. 8: 1549–1558.

    PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V. & T.F.C. Mackay, 1994. Direct determination of retrotransposon transposition rates in Drosophila melanogaster. Genet. Res. Camb. 63: 139–144.

    CAS  Google Scholar 

  • Pasyukova, E.G. & S.V. Nuzhdin, 1993. Doc and copia instability in an isogenic Drosophila melanogaster stock. Mol. Gen. Genet. 240: 302–306.

    Article  PubMed  CAS  Google Scholar 

  • Prud'homme, N., M. Gans, M. Masson, C. Terzian & A. Bucheton, 1995. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139: 697–711.

    PubMed  Google Scholar 

  • Terrinoni, A., C. Di Franco, P. Dimitri & N. Junakovic, 1997. Intragenomic distribution and stability of transposable elements in euchromatin and heterochromatin of Drosophila melanogaster: non-LTR retrotransposons. J. Mol. Evol. 45: 145–153.

    Article  PubMed  CAS  Google Scholar 

  • Voytas, D.F. & J.D. Boeke, 1993. Yeast retrotransposons and tRNAs. Trends Genet. 91: 421–427.

    Article  Google Scholar 

  • Wilke, C.M., E. Maimer & J. Adams, 1992. The population biology and evolutionary significance of Ty elements in Saccharomyces cerivisiae. Genetica 86: 155–173.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junakovic, N., Di Franco, C. & Terrinoni, A. Evidence for a host role in regulating the activity of transposable elements in Drosophila melanogaster: the case of the persistent instability of Bari 1 elements in Charolles stock. Genetica 100, 149–154 (1997). https://doi.org/10.1023/A:1018325427405

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018325427405

Navigation