Skip to main content
Log in

About the origin of retroviruses and the co-evolution of the gypsy retrovirus with the Drosophila flamenco host gene

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The gypsy element of Drosophila melanogaster is the first retrovirus identified so far in invertebrates. According to phylogenetic data, gypsy belongs to the same group as the Ty3 class of LTR-retrotransposons, which suggests that retroviruses evolved from this kind of retroelements before the radiation of vertebrates. There are other invertebrate retroelements that are also likely to be endogenous retroviruses because they share with gypsy some structural and functional retroviral-like characteristics. Gypsy is controlled by a Drosophila gene called flamenco, the restrictive alleles of which maintain the retrovirus in a repressed state. In permissive strains, functional gypsy elements transpose at high frequency and produce infective particles. Defective gypsy proviruses located in pericentromeric heterochromatin of all strains seem to be very old components of the genome of Drosophila melanogaster, which indicates that gypsy invaded this species, or an ancestor, a long time ago. At that time, Drosophila melanogaster presumably contained permissive alleles of the flamenco gene. One can imagine that the species survived to the increase of genetic load caused by the retroviral invasion because restrictive alleles of flamenco were selected. The characterization of a retrovirus in Drosophila, one of the most advanced model organisms for molecular genetics, provides us with an exceptional clue to study how a species can resist a retroviral invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberola, T.M. & R. de Frutos, 1996. Molecular structure of a gyp-sy element of Drosophila subobscura (gypsyDs) constituting a degenerate form of insect retroviruses. Nucleic Acids Res. 24: 914–923.

    Article  PubMed  CAS  Google Scholar 

  • Begun, D.J. & C.F. Aquadro, 1992. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 356: 519–520.

    Article  PubMed  CAS  Google Scholar 

  • Biémont, C., F. Lemeunier, M.P. Garcia Guerreiro, J.F. Brook-field, C. Gautier, S. Aulard & E.G. Pasyukova, 1994. Population dynamics of the copia, mdg1, mdg3, gypsy, and P transposable elements in a natural population of Drosophila melanogaster. Genet. Res. Camb. 63: 197–212.

    Google Scholar 

  • Britten, R.J., 1995. Active gypsy/Ty3 retrotransposons or retrovirus-es in Caenorhabditis elegans. Proc Natl Acad Sci USA 92: 599–601.

    Article  PubMed  CAS  Google Scholar 

  • Britten, R.J., T.J. McCormack, T.L. Mears & E.H. Davidson, 1995. Gypsy/Ty3-class retrotransposons integrated in the DNA of her-ring, tunicate, and echinoderms. J. Mol. Evol. 40: 13–24.

    Article  PubMed  CAS  Google Scholar 

  • Brönner, G., H. Taubert & H. Jackle, 1995. Mesoderm-specific B104 expression in the Drosophila embryo is mediated by internal cis-acting elements of the transposon. Chromosoma 103: 669–675.

    PubMed  Google Scholar 

  • Coffin, J.M., 1990. Retroviridae and their replication, pp. 1437- 1500 in Virology, edited by B.N. Fields, D.M. Knipe et al. Raven Press, Ltd New York, N.Y.

    Google Scholar 

  • Contamine, D., A.M. Petitjean & M. Ashburner, 1989. Genetic resis-tance to viral infection: the molecular cloning of a Drosophila gene that restricts infection by the rhabdovirus sigma. Genetics 123: 525–533.

    PubMed  CAS  Google Scholar 

  • David, J.R. & P. Capy, 1988. Genetic variation of Drosophila melanogaster natural populations. Trends in Genetics 4: 106–111.

    Article  PubMed  CAS  Google Scholar 

  • Dominguez, A. & J. Albornoz, 1996. Rates of movement of trans-posable elements in Drosophila melanogaster. Mol. Gen. Genet. 251: 130–138.

    PubMed  CAS  Google Scholar 

  • Doolittle, R.F., D.F. Feng, M.S. Johnson & M.A. McClure, 1989.Origins and evolutionary relationships of retroviruses. The Quar-terly Review of Biology 64: 1–30.

    Article  CAS  Google Scholar 

  • Felder, H., A. Herzceg, Y. Dechastonay, P. Aeby, H. Tobler & F. Muller, 1994. Tas, a retrotransposon from the parasitic nematode Ascaris lumbricoides. Gene 149: 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Friesen, P.D. & M.S. Nissen, 1990. Gene organization and transcrip-tion of TED, a lepidopteran retrotransposon integrated within the baculovirus genome. Mol. Cell. Biol. 10: 3067–3077.

    PubMed  CAS  Google Scholar 

  • Gabriel, A., M. Willems, E.H. Mules & J.D. Boeke, 1996. Repli-cation infidelity during a single cycle of Ty1 retrotransposition. Proc. Natl. Acad. Sci. USA 93: 7767–7771.

    Article  PubMed  CAS  Google Scholar 

  • Ho, D.Y., 1992. H.S.V. latency: molecular aspects. Progress Medical Virology 39: 76–115.

    CAS  Google Scholar 

  • Inouye, S., S. Yuki & K. Saigo, 1986. Complete nucleotide sequence and genome organization of a Drosophila transposable genetic element, 297. Eur. J. Biochem. 154: 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A., E.S. Belyaeva & M.M. Aslanian, 1990. Autonomous transposition of gypsy mobile elements and genetic instability in Drosophila melanogaster. Mol. Gen. Genet. 224: 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A., C. Terzian, P. Santamaria, A. Pelisson, N. Prud'homme & A. Bucheton, 1994a.Retroviruses in invertebrates: gypsy is an infectious retrovirus of Drosophila. Proc. Natl. Acad. Sci. USA 91: 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A.I., N.V. Lyubomirskaya, E.S. Belyaeva, N.G. Shostack & Y.V. Ilyin, 1994b. The introduction of a transpositionally active copy of retrotransposon gypsy into the stable strain of Drosophila melonogaster causes genetic instability. Mol. Gen. Genet. 242: 472–477.

    Article  PubMed  CAS  Google Scholar 

  • Labrador, M. & A. Fontdevila, 1994. High transposition rates of osvaldo, a new Drosophila buzzatii retrotransposon. Mol. Gen. Genet. 245: 661–674.

    Article  PubMed  CAS  Google Scholar 

  • Lambertsson, A., S. Andersson & T. Johansson, 1989. Cloning and characterization of variable-sized gypsy mobile elements in Drosophila melanogaster. Plasmid 22: 22–31.

    Article  PubMed  CAS  Google Scholar 

  • Marlor, R.L., S.M. Parkhurst & V.G. Corces, 1986. The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol. Cell. Biol. 6: 1129–1134.

    PubMed  CAS  Google Scholar 

  • Mevel-Ninio, M., M.C. Mariol & M. Gans, 1989. Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovoD dominant female-sterile mutations: molecular analysis of revertant alleles. EMBO J. 8: 1549–1558.

    PubMed  CAS  Google Scholar 

  • Mizrokhi, L.J. & A.M. Mazo, 1990. Cloning and analysis of the mobile element gypsy from D. virilis. Nucleic acids reseach 19: 913–916.

    Google Scholar 

  • Modolell, J., W. Bender & M. Meselson, 1983. Drosophila melanogaster mutations suppressible by the suppressor of Hairy-wing are insertions of a 7.3-kilobase mobile element. Proc. Natl. Acad. Sci. USA 80: 1678–1682.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, B.R. & R.G. Webster, 1996. Orthomyxoviruses, pp. 1397–1445 in Fields virology, Vol. 1, Third edition, edited by B.N. Fields, D.M. Knipe and P.M. Howley. Lippincott-Raven Publish-ers, Philadelphia.

    Google Scholar 

  • Nuzhdin, S.V & T.F.C. Mackay, 1995. The genomic rate of transpos-able element movement in Drosophila melanogaster. Mol. Biol. Evol. 12: 180–181.

    PubMed  CAS  Google Scholar 

  • Peifer, M. & W. Bender, 1988. Sequences of the gypsy transposon of Drosophila necessary for its effects on adjacent genes. Proc. Natl. Acad. Sci. USA 85: 9650–9654.

    Article  PubMed  CAS  Google Scholar 

  • Pelisson, A., S.U. Song, N. Prudhomme, P.A. Smith, A. Bucheton & V.G. Corces, 1994. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J 13: 4401–4411.

    PubMed  CAS  Google Scholar 

  • Prud'homme, N., M. Gans, M. Masson, C. Terzian & A. Bucheton, 1994. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139: 697–711.

    Google Scholar 

  • Saigo, K., W. Kugimiya, Y. Matsuo, S. Inouye, K. Yoshioka & S.Yuki, 1984. Identification of the coding sequence for a reverse.37 transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature 312: 659–661.

    Article  PubMed  CAS  Google Scholar 

  • Song, S.U., T. Gerasimova, M. Kurkulos, J.D. Boeke & V.G. Corces, 1994. An Env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes and Dev. 8: 2046–2057.

    PubMed  CAS  Google Scholar 

  • Springer, M.S. & R.J. Britten, 1993. Phylogenetic relationships of reverse transcriptase and RNase H sequences and aspects of genome structure in the gypsy group of retrotransposons. Mol. Biol. Evol. 10: 1370–1379.

    PubMed  CAS  Google Scholar 

  • Stacey, S.N., R.A. Lansman, H.W. Brock & T.A. Grigliatti, 1986. Distribution and conservation of mobile elements in genus Drosophila. Mol. Biol. Evol. 3: 522–534.

    PubMed  CAS  Google Scholar 

  • Szatkowski-Ozers, M. & P. Friesen, 1996. The Env-like open reading frame of the baculovirus-integrated retrotransposon TEDencodes a retrovirus-like Envelope protein. Virology 226: 252–259.

    Article  Google Scholar 

  • Tanda, S., A.E. Shrimpton, C. Ling-Ling, H. Itayama, H. Matsub-ayashi, K. Saigo, Y.N. Tobari & C.H. Langley, 1988. Retrovirus-like features and site specific insertions of a transposable element, tom, in Drosophila ananassae. Mol. Gen. Genet. 214: 405–411.

    Article  PubMed  CAS  Google Scholar 

  • Tanda, S., J.L. Mullor & V.G. Corces, 1994. The Drosophila tom retrotransposon encodes an envelope protein. Mol. Cell. Biol. 14: 5392–5401.

    PubMed  CAS  Google Scholar 

  • Tristem, M., P. Kabat, E. Herniou, A. Karpas & F. Hill, 1995. Easel, a gypsy LTR-retrotransposon in the Salmonidae. Mol. Gen. Genet. 249: 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, S.P. & R.W. Compans, 1993. Virus infection of polarized epithelial cells. Advances in Virus Research 42: 187–247.

    Article  PubMed  CAS  Google Scholar 

  • Vaury, C., A. Bucheton & A. Pelisson, 1989. The _-heterochromatic sequences flanking the I elements are themselves defective trans-posable elements. Chromosoma 98: 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Wayne, L.M., D. Contamine & M. Kreitman, 1996. Molecular pop-ulation genetics of ref(2)P, a locus which confers viral resistance in Drosophila. Mol. Biol. Evol. 13: 191–199.

    PubMed  CAS  Google Scholar 

  • Whitton, J.L. & M.B. Oldstone, 1996. Immune response to viruses, pp. 345–374 in Fields virology, Vol. 1, Third edition, edited by B.N. Fields, D.M. Knipe and P.M. Howley. Lippincott-Raven Publishers, Philadelphia.

    Google Scholar 

  • Xiong, Y. & T.H. Eickbush, 1988. Similarity of reverse transcriptase-like sequences of viruses, transposable elements and mitochon-drial introns. Mol. Biol. Evol. 5: 675–690.

    PubMed  CAS  Google Scholar 

  • Xiong, Y. & T.H. Eickbush, 1990. Origin and evolution of retroele-ments based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pélisson, A., Teysset, L., Chalvet, F. et al. About the origin of retroviruses and the co-evolution of the gypsy retrovirus with the Drosophila flamenco host gene. Genetica 100, 29–37 (1997). https://doi.org/10.1023/A:1018336303298

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018336303298

Navigation