Skip to main content
Log in

Polymorphism in heterogeneous environments, evolution of habitat selection and sympatric speciation: Soft and hard selection models

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

The adaptation to a variable environment has been studied within soft and hard selection frameworks. It is shown that an epistatically determined habitat preference, following a Markovian process, always leads to the maintenance of an adaptive polymorphism, in a soft selection context. Although local mating does not alter the conditions for polymorphism maintenance, it is shown that, in that case, habitat selection also leads to the evolution of isolated reproductive units within each available habitat. Habitat selection, however, cannot evolve in the total absence of adaptive polymorphism. This represents a theoretical problem for all models assuming habitat selection to be an initially fixed trait, and means that within a soft selection framework, all the available habitats will be exploited, even the less favourable ones.

On the other hand, polymorphism cannot be maintained when selection is hard, even when all individuals select their habitat. Here, the evolution of habitat selection does not need any prerequisite polymorphism, and always leads to the exploitation of only one habitat by the most specialized genotype. It appears then that hard selection can account for the existence of empty habitat and for an easier evolution of habitat specialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, S. S., McRea, K. D., Abrahamson, W. G. and Hartzel, L. M. (1989) Host genotype choice by the ball gallmakerEurosta solidaginis (Diptera Tephritidae).Ecology 70, 1048–54.

    Google Scholar 

  • Anstensrud, M. and Schram, T. A. (1988) Host and site selection by the larval stages and adults of the parasitic copepodLernaeenicus sprattae (Sowerby)(Copepoda, Pennellidae) in the Oslofjord.Hydrobiologia 167/168, 587–95.

    Google Scholar 

  • Barton, N. and Clark, A. (1990) Population structure and processes in evolution.Population Biology: Ecological and Evolutionary Viewpoints (K. Wöhrmann and S. K. Jain, eds), pp. 115–73. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Bush, G. L. (1975) Sympatric speciation in phytophagous parasitic insects.Evolutionary Strategies of Parasitic Insects and Mites (P. W. Price, ed.), pp. 187–204. Plenum, New York, USA.

    Google Scholar 

  • Cavener, D. (1979) Preference for ethanol inDrosophila melanogaster associated with the alcohol deshydrogenase polymorphism.Behavior. Genet. 9, 359–65.

    Google Scholar 

  • Christensen, B. (1977) Habitat preference among amylase genotypes inAsellus aquaticus (Isopoda, Crustacea.Hereditas 87, 21–6.

    PubMed  Google Scholar 

  • De Meeûs, T., Renaud, F. and Gabrion, C. (1990) A model for studying isolation mechanisms in parasite populations: the genusLepeophtheirus (Copepoda, Caligidae).J. Exp. Zool. 254, 207–14.

    PubMed  Google Scholar 

  • Dempster, E. R. (1955) Maintenance of genetic heterogeneity.Cold Spring Harb. Symp. Quant. Biol. Sci. 20, 25–32.

    Google Scholar 

  • Diehl, S. R. and Bush, G. L. (1989) The role of habitat preference in adaptation and speciation.Speciation and its consequences (D. Otte and J. A. Endler, eds) pp. 345–85. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Doyle, R. W. (1975) Settlement of planktonic larvae: a theory of habitat selection in varying environments.Am. Nat. 109, 113–26.

    Google Scholar 

  • Emson, R. H. and Mladenov, P. V. (1987) Brittlestar host specificity and apparent host discrimination by the parasitic copepodOphiopsyllus reductus.Parasitology 94, 7–15.

    Google Scholar 

  • Eyland, E. A. (1971) Moran's island migration model.Genetics 69, 399–403.

    PubMed  Google Scholar 

  • Felsenstein, J. (1981) Skepticism towards Santa Rosalia, or why are there so few kinds of animals?Evolution 35, 124–38.

    Google Scholar 

  • Fox, L. R. and Morrow, P. A. (1981) Specialization: species property or local phenomenon?Science 211, 887–93.

    Google Scholar 

  • Futuyma, D. J. and Mayer, G. C. (1980) Non-allopatric speciation in animals.Syst. Zool. 29, 254–71.

    Google Scholar 

  • Futuyma, D. J. and Moreno, G. (1988) The evolution of ecological specialization.Ann. Rev. Ecol. Syst. 19, 207–33.

    Google Scholar 

  • Garcia-Dorado, A. (1986) The effect of niche preference on polymorphism protection in a heterogeneous environment.Evolution 40, 936–45.

    Google Scholar 

  • Garcia-Dorado, A. (1987) Polymorphism from environmental heterogeneity: some features of genetically induced niche preference.Theor. Pop. Biol. 32, 66–75.

    Google Scholar 

  • Gibbons, J. R. H. (1979) A model for sympatric speciation inMegarhyssa (Hymenoptera, Ichneumonidae): competitive speciation.Am. Nat. 114, 719–41.

    Google Scholar 

  • Gliddon, C. and Strobeck, C. (1975) Necessary and sufficient conditions for multiniche polymorphism in haploids.Am. Nat. 109, 233–5.

    Google Scholar 

  • Hedrick, P. W. (1986) Genetic polymorphism in heterogeneous environment: a decade later.Ann. Rev. Ecol. Syst. 17, 535–66.

    Google Scholar 

  • Hedrick, P. W. (1990a) Genotypic habitat selection: a new model and its application.Heredity 65, 145–9.

    PubMed  Google Scholar 

  • Hedrick, P. W. (1990b) Theoretical analysis of habitat selection and the maintenance of genetic variation.Ecological and Evolutionary Genetics of Drosophila (J. S. F. Baeker, W. T. Starmer and R. J. McIntyre, eds), pp. 209–27. Plenum, New York, USA.

    Google Scholar 

  • Hoekstra, R. F., Bijlsma, R. and Dolman, A. J. (1985) Polymorphism from environmental heterogeneity: models are only robust if the heterozygote to the favoured homozygote in each environment.Genet. Res. Cambr. 45, 299–314.

    Google Scholar 

  • Kjellberg, G., Gouyon, P. H., Ibrahim, M., Raymond, M. and Valdeyron, G. (1987) The stability of the symbiosis between dioecious figs and their pollinators: a study ofFicus carica L. andBlastophaga psenes L.Evolution 41, 693–704.

    Google Scholar 

  • Jones, J. S. and Probert, R. F. (1980) Habitat selection maintains a deleterious allele in a heterogeneous environment.Nature 287, 632–3.

    Google Scholar 

  • Levene, H. (1953) Genetic equilibrium when more than one ecological niche is available.Am. Nat. 87, 331–3.

    Google Scholar 

  • Maynard-Smith, J. (1962) Disruptive selection, polymorphism and sympatric speciation.Nature 195, 60–2.

    Google Scholar 

  • Maynard-Smith, J. (1966) Sympatric speciation.Am. Nat. 100, 637–49.

    Google Scholar 

  • Maynard-Smith, J. (1970) Genetic polymorphism in a varied environment.Am. Nat. 104, 487–90.

    Google Scholar 

  • Maynard-Smith, J. and Hoekstra, R. F. (1980) Polymorphism in a varied environment: how robust are the models?Genet. Res. Camb. 35, 45–57.

    Google Scholar 

  • Mayr, E. (1963)Populations, Species and Evolution. Harvard University Press, Cambridge, MA, USA.

    Google Scholar 

  • Mayr, E. (1982) Speciation and macroevolution.Evolution 36, 1119–32.

    Google Scholar 

  • Moran, P. A. P. (1959) The theory of some population genetics effects of population subdivision.Aust. J. Biol. Sci. 12, 109–16.

    Google Scholar 

  • Myers, J. H., Monro, J. and Neil, M. (1981) Egg clumping, host plant selection and population regulation inCactoblastis cactorum (Lepidoptera).Oecologia 51, 7–13.

    Google Scholar 

  • Olson, R. O. (1985) The consequences of short-distance larval dispersal in a sessile marine invertebrate.Ecology 66, 30–9.

    Google Scholar 

  • Prout, T. (1968) Sufficient conditions for multiple niche polymorphism.Am. Nat. 102, 493–6.

    Google Scholar 

  • Rausher, M. D. (1984) The evolution of habitat preference in subdivided populations.Evolution 38, 596–608.

    Google Scholar 

  • Rhode, K. (1979) A critical evaluation of intrinsic and extrinsic factors responsible for niche restriction in parasites.Am. Nat. 114, 648–71.

    Google Scholar 

  • Rice, W. R. (1984) Disruptive selection on habitat preference and the evolution of reproductive isolation: a simulation study.Evolution 38, 1251–60.

    Google Scholar 

  • Rice, W. R. (1987) Speciation via habitat specialization: the evolution of reproductive isolation as a correlated character.Evol. Ecol. 1, 301–14.

    Google Scholar 

  • Rice, W. R. and Salt, G. W. (1988) Speciation via disruptive selection: experimental evidence.Am. Nat. 131, 911–17.

    Google Scholar 

  • Rosenzweig, M. L. (1978) Competitive speciation.Biol. J. Linn. Soc. 10, 275–89.

    Google Scholar 

  • Rosenzweig, M. L. (1987) Habitat selection as a source of biological diversity.Evol. Ecol. 1, 315–30.

    Google Scholar 

  • Rosenzweig, M. L. and McCord, R. D. (1991) Incumbent replacement — evidence for long term evolutionary progress.Paleobiology 17, 202–13.

    Google Scholar 

  • Rosenzweig, M. L. and Taylor, J. A. (1980) Speciation diversity in Ordovician invertebrates: filing niches quickly and carefully.Oikos 35, 236–43.

    Google Scholar 

  • Smiley, J. (1978) Plant chemistry and the evolution of specificity: new evidence fromHeliconius andPassiflora.Science 201, 745–7.

    Google Scholar 

  • Strobeck, C. (1974) Sufficient conditions for polymorphism with N niches and M mating groups.Am. Nat. 108, 152–6.

    Google Scholar 

  • Tauber, C. A. and Tauber, M. J. (1977) A genetic model for sympatric speciation through habitat diversification and seasonal isolation.Nature 268, 702–5.

    PubMed  Google Scholar 

  • Tauber, C. A. and Tauber, M. J. (1989) Sympatric speciation in insects: perception and perspective.Speciation and Its Consequences (D. Otte and J. A. Endler, eds), pp. 307–44. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Templeton, A. R. and Rothman, E. D. (1981) Evolution in fine grained environments. II. Habitat selection as a homeostatic mechanism.Theor. Popul. Biol. 19, 326–40.

    Google Scholar 

  • Thoday, J. M. and Gibson, J. B. (1970) The probability of isolation by disruptive selection.Am. Nat. 104, 219–30.

    Google Scholar 

  • Wallace, B. (1968) Polymorphism, population size, and genetic load,Population Biology and Evolution (R. C. Lewontin, ed.), pp. 87–108. Syracuse University Press, Syracuse, NY, USA.

    Google Scholar 

  • Wallace, B. (1975) Hard and soft selection revisited.Evolution 29, 465–73.

    Google Scholar 

  • Wasserman, S. S. and Futuyma, D. J. (1981) Evolution of host plant utilisation in laboratory populations of the southern cowpea weevil,Callosobruchus maculatus Fabricius (Coleoptera, Bruchidae).Evolution 35, 605–17.

    Google Scholar 

  • Wilson, D. S. and Turelli, M. (1986) Stable underdominance and the evolutionary invasion of empty niches.Am. Nat. 127, 835–50.

    Google Scholar 

  • Wood, T. K. and Guttman, S. I. (1983)Euchenopa binotata complex: sympatric speciation?Science 220, 310–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Meeûs, T., Michalakis, Y., Renaud, F. et al. Polymorphism in heterogeneous environments, evolution of habitat selection and sympatric speciation: Soft and hard selection models. Evol Ecol 7, 175–198 (1993). https://doi.org/10.1007/BF01239387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01239387

Keywords

Navigation