Skip to main content
Log in

Optimisation of reduction of global CO2 emission based on a simple model of the carbon cycle

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

A simple model has been designed to describe the interaction of climate and biosphere. Carbon dioxide, understood as a major emitted gas, leads to a change of global climate. Economic interpretation of the model is based on the maximisation of the global CO2 cumulative emissions. The two most important profiles of emission have been obtained: optimal and multi-exponential suboptimal profiles, each displaying different characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Bellman, I. Glicksberg and O.A. Gross, Some Aspects of the Mathematical Theory of Control Process (Rand Corporation, Santa Monica, 1958).

    Google Scholar 

  2. M.I. Budyko, The Global Change (Gidrometeoizdat, Leningrad, 1974) (in Russian).

    Google Scholar 

  3. R.A. Houghton, in: Changes in Terrestrial Carbon over the Last 135 Years, The Global Carbon Cycle, NATO AS1 Ser., Vol. 115, ed. M. Heimann (Springer, New York, 1993).

    Google Scholar 

  4. R.A. Houghton, J.E. Hobbie, J.M. Melillo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell, Ecol. Monogr. 53 (1983) 235–262.

    Article  CAS  Google Scholar 

  5. IPCC (Intergovernmental Panel on Climate Change), Climate Change 1992, The Supplementary Report to the IPCC Scientific Assessment, eds. J.T. Houghton, G.J. Jenkins and J.J. Ephraums (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  6. IPCC, Climate Change 1995. The IPCC Scientific Assessment (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  7. M. Janssen, J. Rotmans and K. Vrieze, Climate change: Optimizaton of response strategies, Paper presented at the 13th World Conference on Operation Research IFORS 93, 12–16 July 1993, Lisbon, Portugal.

  8. P.D. Jones, T.M.L. Wigley and P.B. Wright, Global and hemispheric annual temperature variations between 1854 and 1991, NDP-022, CDIAC, ORNL, Oak Ridge (1993).

    Google Scholar 

  9. C.D. Keeling, Atmospheric CO2 concentrations — Mauna Loa observatory, Hawaii, 1958–1993, NDP-001, CDIAC, ORNL, Oak Ridge (1993).

    Google Scholar 

  10. O. Kwon and J.L. Schnoor, Global Biogeochemical Cycles 8(3) (1994) 295–305.

    Article  CAS  Google Scholar 

  11. H. Lieth, in: Modeling the Primary Productivity of the World, Primary Productivity of the Biosphere, eds. H. Lieth and R.H. Whittaker (Springer, Berlin, 1975) pp. 237–263.

    Google Scholar 

  12. E. Maier-Raimer and K. Hasselmann, Climate Dynamics 2 (1987) 63–90.

    Article  Google Scholar 

  13. G. Marland and T.A. Boden, Global, regional and national CO2 emission estimates from fossil fuel burning, cement production, and gas flaring: 1950–1992, NDP-030, CDIAC, ORNL, Oak Ridge (1993).

    Google Scholar 

  14. B. Moore III and B.H. Braswell, Global Biogeochemical Cycles 8(1) (1994) 23–38.

    Article  CAS  Google Scholar 

  15. A. Neftel, E. Moor, H. Oeschger, B. Stauffer, H. Friedli, H. Lötscher and U. Siegenthaler, in: Atmospheric Carbon Dioxide Concentration — Historical Record, Siple Station, Trends 90: A compendium of data on global change, Rep. 36, CDIAC, ORNL, Oak Ridge (1990).

    Google Scholar 

  16. W.D. Nordhaus, Managing the Global Commons: The Economics of Climate Change (MIT Press, Cambridge, MA, 1994).

    Google Scholar 

  17. OECD, Global warming: Economic dimensions and policy responses, OECD report, Paris (1995).

  18. G. Petschel-Held, H.J. Schellnhuber, Th. Bruckner, F. Toth and K. Hasselmann, The tolerable windows approach: Theoretical and methodological foundations, Climate Change (1998, submitted).

  19. L.S. Pontryagin, V.G. Boltyanski, R.V. Gamkrelidze and E.F. Mitschenko, Mathematical Theory of Optimal Control (Nauka, Moscow, 1976) (in Russian).

    Google Scholar 

  20. L.R. Rakipova and O.N. Vishnyakova, Meteorology and Hydrology 5 (1973) 23–31 (in Russian).

    Google Scholar 

  21. R.M. Rotty and G. Marland, Carbon dioxide production from fossil fuels and cement, 1860–1982, NDP-006, CDIAC, ORNL, Oak Ridge (1984).

    Google Scholar 

  22. L.J. Sarmiento, L.Q. Corinne and S.W. Pacala, Global Biogeochemical Cycles 9(1) (1995) 121–137.

    Article  CAS  Google Scholar 

  23. O. Tahvonen, H. von Storch and J. von Storch, Climate Research 4 (1994) 127–141.

    Google Scholar 

  24. R. Tol, The Climate Fund: Survey of Literature on Costs and Benefits (Institute for Environmental Studies, Holland, 1993).

    Google Scholar 

  25. United Nations, Framework Convention on Climate Change (United Nations, New York, 1992).

    Google Scholar 

  26. WBGU (German Advisory Council on Global Change), Scenario for the Deviation of Global Reduction Targets and Implementation Strategies (AWI, Bremerhaven, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svirezhev, Y., Brovkin, V., von Bloh, W. et al. Optimisation of reduction of global CO2 emission based on a simple model of the carbon cycle. Environmental Modeling & Assessment 4, 23–33 (1999). https://doi.org/10.1023/A:1019039628546

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019039628546

Navigation