Skip to main content
Log in

Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory

Abklingende ebene Dehnungszustände in einem halb-unendlichen Streifen und Randbedingungen fur die Plattentheorie

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Friedrichs and Dressler and Gol'denveiser and Kolos have independently shown that the classical plate theory of Kirchhoff is the leading term of the outer expansion solution (in a small thickness parameter) for the linear elasto-statics of thin, flat, isotropic bodies. As expected, neither this leading term nor the full outer solution alone is able to satisfy arbitrarily prescribed edge conditions. On the other hand, the inner solution, which is significant only near the edge, is determined by a sequence of boundary value problems which are very difficult to solve, nearly as difficult as the original problem. For stress edge-data, St. Venant's principle may be invoked to generate a set of stress boundary conditions for the classical plate theory as well as for some higher order terms in the outer expansion without any reference to the inner solution. Attempts in the literature to derive the corresponding boundary conditions for displacement edge-data have not been successful.

With the help of the Betti-Rayleigh reciprocity theorem, we have derived the correct set of boundary conditions for classical and higher order plate theories with arbitrary edge-data. In this paper, we work out these conditions for an infinite plate strip with edgewise uniform data. We show that the conditions for individual terms in the outer expansion may be summed to give a simple set of appropriate boundary conditions for the full outer solution at the mid-plane. The boundary conditions obtained for the semi-infinite plate case are rigorously correct and the result for the stress data case rigorously justifies the application of St. Venant's principle. Applications of the displacement boundary conditions obtained are illustrated by two simple problems: (i) The shearing of an infinitely long rectangular block, and (ii) A clamped infinite plate strip under uniform face pressure.

Zusammenfassung

Friedrichs und Dressler sowie Gol'denveiser und Kolos haben unabhängig voneinander gezeigt, dass das erste Glied der durch äussere Entwicklung (nach einem kleinen Dickeparamter) gewonnenen Lösung für die lineare Elastostatik dünner, ebener, isotroper Körper zur klassischen Kirchhoffschen Plattentheorie führt. Wie erwartet kann weder dieses erste Glied noch die vollständige äussere Lösung allein willkürlich vorgegebene Randwerte erfüllen. Andererseits ist die innere Lösung, die nur in Randnähe von Bedeutung ist, durch eine Folge von Randwertproblemen bestimmt, die sehr schwer zu lösen sind, nahezu ebenso schwer wie das ursprüngliche Problem. Im Fall von Randbedingungen für die Spannungen kann man das St. Venantsche Prinzip sowohl zur Erzeugung eines Systems von Spannungsrandbedingungen für die klassische Plattentheorie als auch für einige Glieder höherer Ordnung in der äusseren Entwicklung ohne jeden Bezug zur inneren Lösung heranziehen. In der Literatur dargestellte Versuche, die entsprechenden Bedingungen für das Verschiebungsrandwertproblem herzuleiten, waren nicht erfolgreich.

Mit Hilfe des Betti-Rayleighschen Reziprozitätssatzes haben wir das korrekte System von Randbedingungen für die klassische Plattentheorie und auch für Plattentheorien höherer Ordnung mit willkürlichen Randwerten hergeleitet. In der vorliegenden Arbeit stellen wir diese Bedingungen für einen unendlichen Plattenstreifen mit gleichmässigen Randwerten auf. Wir zeigen, dass man durch Aufsummieren der Bedingungen für die einzelnen Glieder der äusseren entwicklung ein einfaches System angemessener Randbedingungen für die vollständige äussere Lösung an der Mittelebene erhalten kann. Die Randbedingungen, die man für den Fall einer half-unendlichen Platte erhält, sind streng gültig, und das Ergebnis für den Fall von vorgegebenen Spannungen rechtfertigt die Anwendung des St. Venantschen Prinzips vollkommen. Zwei einfache Probleme illustrieren die Anwendung der für das Verschiebungsproblem erhaltenen Randbedingungen: (i) Die Scherung eines unendlich langen rechteckigen Blocks und (ii) Ein eingespannter unendlicher Plattenstreifen unter gleichmässiger Belastung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.O. Friedrichs, The edge effect in the bending of plates, H. Reissner Anniv. Vol., Edwards, Ann Arbor, Mich. (1949) 197–210.

    Google Scholar 

  2. K.O. Friedrichs, Kirchhoff's boundary conditions and the edge effect for elastic plates, Proc. Sym. in Appl. Math., Vol. 3, McGraw Hill, New York (1950) 117–124.

    Google Scholar 

  3. K.O. Friedrichs and R.F. Dressler, A boundary layer theory for elastic bending of plates, Comm. Pure Appl. Math. 14 (1961) 1–33.

    Google Scholar 

  4. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed., Dover, New York, 1944.

    Google Scholar 

  5. E.L. Reiss and S. Locke, On the theory of plane stress, Quart. Appl. Math. 19 (1961) 195–203.

    Google Scholar 

  6. E.L. Reiss, Symmetric bending of thick circular plates, J. of S.I.A.M. 10 (1962) 596–609.

    Google Scholar 

  7. A.L. Gol'denveizer, Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity, P.M.M. 26(4) (1962) 668–686.

    Google Scholar 

  8. A.L. Gol'denveizer and A.V. Kolos, On the derivation of two-dimensional equations in the theory of thin elastic plates, P.M.M. 29(1) (1965) 141–155.

    Google Scholar 

  9. A.V. Kolos, Methods of refining the classical theory of bending and extension of plates, P.M.M. 29 (4) (1965) 771–781.

    Google Scholar 

  10. A.M.A.Van der Heijden, An asymptotic analysis of a plate with a circular hole, Report No. 581, Jan. 1976, Lab. of Eng. Mech., Delft Univ. of Tech., Delft, The Netherlands.

    Google Scholar 

  11. E.L. Reiss, Extension of an infinite plate with a circular hole, J. of S.I.A.M. 11 (1963) 840–854.

    Google Scholar 

  12. E. Reissner, On the derivation of boundary conditions for plate theory, Proc. Royal Soc., A 276 (1963) 178–186.

    Google Scholar 

  13. S. Nair and E. Reissner, On two-and three-dimensional results for rotationally symmetric deformation of circular cylindrical shells, Int. J. Solids & Structures 14 (1978) 905–924.

    Google Scholar 

  14. J.P. Benthem, A Laplace transform method for the solution of semi-infinite and finite strip problems in stress analysis, Quart. J. Mech. Appl. Math. 16 (1963) 413–429.

    Google Scholar 

  15. G.D. Gupta, An integral equation approach to the semi-infinite strip problem, J. App. Mech. 40 (1973) 948–954.

    Google Scholar 

  16. F. Erdogan, G.D. Gupta, and T.S. Cook, The numerical solutions of singular integral equations. In: G.C. Sih (ed.), Methods of Analysis and Solutions to Crack Problems, Noordhoff, 1972.

  17. D.B. Bogy, Solution of the plane end problem for a semi-infinite strip, Z.A.M.P. 26 (1975) 749–769.

    Google Scholar 

  18. G.G. Adams and D.B. Bogy, The plane solution for bending of joined dissimilar elastic semi-infinite strips, Int. J. Solids & Structures 12 (1976) 239–249.

    Google Scholar 

  19. R.D. Gregory and I. Gladwell, The cantilever beam under tension, bending or flexture at infinity, J. of Elasticity 12 (1982) 317–343.

    Google Scholar 

  20. R.D. Gregory, The traction boundary value problem for the elastostatic semi-infinite strip, existence of solutions, and completeness of the Papkovich-Fadle eigenfunctions. J. of Elasticity 10 (1980) 295–327.

    Google Scholar 

  21. M. Gurtin, The Linear Theory of Elasticity. Handbuch der Physik, 6a/3, Springer-Verlag, 1972.

  22. R.D. Gregory, Green's functions, bi-linear forms and the completeness of the eigenfunctions for the elastostatic strip and wedge, J. of Elasticity 9 (1979) 283–309.

    Google Scholar 

  23. E. Sternberg and J.K. Knowles, Minimum energy characterizations of Saint-Venant's solution to the relaxed Saint-Venant Problem, Arch. Rat. Mech. Anal. 21 (1965) 7–107.

    Google Scholar 

  24. M.I. Gusein-Zade, On the conditions of existence of decaying solutions of the two-dimensional problem of the theory of elasticity for a semistrip, P.M.M. 29 (1985) 892–901.

    Google Scholar 

  25. S. Timoshenko and N. Goodier, Theory of Elasticity (2nd ed.), McGraw-Hill, New York, 1951, pp. 35–39.

    Google Scholar 

  26. P. Dixit and D.D. Joseph, The shape of stress free surfaces on a sheared block, S.I.A.M.J. Appl. Math. 42 (1982) 653–677.

    Google Scholar 

  27. S. Timoshenko and W. Woinowsky-Krieger, Theory of Plates and Shells (2nd ed.), McGraw-Hill, New York, 1959.

    Google Scholar 

  28. S. Nair and E. Reissner, Improved upper and lower bounds for deflections of orthotropic cantilever beams, Int. J. Solids Struc. 11 (1975) 961–971.

    Article  Google Scholar 

  29. S. Nair and E. Reissner, On asymptotic expansions and error bounds in the derivation of the two-dimensional shell theory, Studies in Appl. Math. 56 (1977) 189–217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research is partly supported by NSERC Operating Grant No. A9259 and, in the case of the second author, also by a UBC Killam Senior Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregory, R.D., Wan, F.Y.M. Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory. J Elasticity 14, 27–64 (1984). https://doi.org/10.1007/BF00041081

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041081

Keywords

Navigation