Skip to main content
Log in

Resampling of network-induced variability in estimates of terrestrial air temperature change

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Uneven and changing spatial distributions of air temperature stations can produce unrepresentative samples of the space-time variability of near-surface air temperature. Over the last century, station networks have varied from less than 300 stations that are largely limited to the Northern Hemisphere to nearly 1700 stations that are fairly well distributed over the terrestrial surface. As a result, estimates of air temperature change derived from historical observation networks often contain network-induced variability.

Spatial resampling methods are used to estimate network-induced variability in terrestrially averaged air temperature anomalies and trends. Random resampling from the station networks allows pseudo confidence intervals and other statistics of variability to be estimated. Network-induced variability appears to be substantial during the late 1800s, especially in the Southern Hemisphere. Most networks from the 1900s and the Northern Hemisphere, however, appear to produce reliable estimates of spatially averaged air temperature anomalies and trends.

A non-random, but historically appropriate, resampling method - sampling a given year's air temperature anomaly field using another year's station distribution - also is used. Using 1987 - one of the warmest years on record - as an example, station distributions from 1881-1988 are used to sample the 1987 air temperature anomaly field. This sampling procedure produces spatially averaged air temperature anomalies for 1987 that vary by over 0.3°C. A combinatorial process of resampling a given year's anomaly field is repeated for every year and every station network to produce terrestrial average air temperature anomaly estimates that vary by more than 0.3°C solely due to network changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boots, B. N.: 1988,Point Pattern Analysis, Sage Publications, Newbury Park, California.

    Google Scholar 

  • Bussières, N. and Hogg, W.: 1989, ‘The Objective Analysis of Daily Rainfall by Distance Weighting Schemes on a Mesoscale Grid’,Atmos.-Ocean 27(3, 521–541.

    Google Scholar 

  • Edwards, H. B.: 1987, ‘Sampling Theory Applied to Measurement and Analysis of Temperature for Climate Studies’,J. Clim. Appl. Meteorol. 26, 731–736.

    Google Scholar 

  • Efron, B. and Gong, G.: 1983, ‘A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation’,Amer. Statist. 37(1, 36–48.

    Google Scholar 

  • Elsner, J. B. and Tsonis, A. A.: 1991, ‘Comparisons of Observed Northern Hemisphere Surface Air Temperature Records’,Geophys. Res. Let. 18(7, 1229–1232.

    Google Scholar 

  • Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R., and Travis, L.: 1983, ‘Efficient Three-Dimensional Global Models for Climate Studies: Models I and II’,Mon. Wea. Rev. 111, 609–662.

    Google Scholar 

  • Hansen, J. and Lebedeff, S.: 1987, ‘Global Trends of Measured Surface Air Temperature’,J. Geophys. Res. 92(D11, 345–413.

    Google Scholar 

  • Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.): 1990,Climate Change, The IPCC Scientific Assessment, Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.

    Google Scholar 

  • Jones, P. D., Raper, S. C. B., Bradley, R. S., Diaz, H. F., Kelly, P. M., and Wigley, T. M. L.: 1986a, ‘Northern Hemisphere Surface Air Temperature Variations: 1851-1984’,J. Clim. Appl. Met. 25, 161–179.

    Google Scholar 

  • Jones, P. D., Raper, S. C. B., and Wigley, T. M. L.: 1986b, ‘Southern Hemisphere Surface Air Temperature Variations: 1851-1984’,J. Clim. Appl. Met. 25, 1213–1230.

    Google Scholar 

  • Jones, P. D., Raper, S. C. B., Cherry, B. S. G., Goodess, C. M., Wigley, T. M. L., Santer, B., and Kelly, P. M.: 1991a,An Updated Global Grid Point Surface Air Temperature Anomaly Data Set: 1851–1990, NDP-020/R1, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Jones, P. D., Wigley, T. M. L., and Farmer, G.: 1991b, ‘Marine and Land Temperature Data Sets: A Comparison and Look at Recent Trends’, in Schlesinger, M. (ed.),Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations, Elsevier, New York.

    Google Scholar 

  • Karl, T. R., Williams, C. N. Jr., Young, P. J., and Wendland, W. M.: 1986, ‘A Model to Estimate Time of Observation Bias Associated with Monthly Mean Maximum, Minimum, and Mean Temperatures for the United States’,J. Clim. Appl. Met. 25(2, 145–160.

    Google Scholar 

  • Karl, T. R. and Jones, P. D.: 1989, ‘Urban Bias in Area-Averaged Surface Air Temperature Trends’,Bull. Amer. Met. Soc. 70(3, 265–270.

    Google Scholar 

  • Karl, T. R., Tarpley, J. D., Quayle, R. G., Diaz, H. F., Robinson, D. A., and Bradley, R. S.: 1989, ‘The Recent Climatic Record: What It Can and Cannot Tell Us’,Rev. Geophys. 27(3, 405–430.

    Google Scholar 

  • Karl, T. R., Knight, R. W., and Christy, J. R.: 1994, ‘Global and Hemispheric Temperature Trends: Uncertainties Related to Inadequate Spatial Sampling’,J. Clim. 7, 1144–1163.

    Google Scholar 

  • Katz, R. W. and Brown, B. G.: 1992, ‘Extreme Events in a Changing Climate: Variability is More Important than Averages’,Clim. Change 21, 289–302.

    Google Scholar 

  • Kukla, G., Gavin, J., and Karl, T. R.: ‘Urban Warming’,J. Clim. Appl. Met. 25, 1265-1270.

  • Mearns, L. O., Katz, R. W., and Schneider, S. H.: 1984, ‘Extreme High Temperature Events: Changes in Their Probabilities with Changes in Mean Temperature’,J. Clim. Appl. Meteorol. 23, 1601–1613.

    Google Scholar 

  • Mitchell, J. M., Jr.: 1953, ‘On the Causes of Instrumentally Observed Temperature Trends’,J. Meteorol. 10, 244–261.

    Google Scholar 

  • Ripley, B.: 1981,Spatial Statistics, Wiley, New York.

    Google Scholar 

  • Robeson, S. M.: 1993, ‘Spatial Interpolation, Network Bias, and Terrestrial Air Temperature Variability’,Publ. Climatol. 46, 1–51.

    Google Scholar 

  • Robeson, S. M.: 1994, ‘Influence of Spatial Interpolation and Sampling on Estimates of Terrestrial Air Temperature Change’,Clim. Res. 4(2, 119–126.

    Google Scholar 

  • Schaal, L. A. and Dale, R. F.: 1977, ‘Time of Observation Bias and “Climate Change”’,J. Appl. Meteorol. 16, 215–222.

    Google Scholar 

  • Schmandt, J. and Clarkson, J. (eds.): 1992,The Regions and Global Warming, Oxford University Press, New York.

    Google Scholar 

  • Trenberth, K. E. and Olson, J. G.: 1991, ‘Representativeness of a 63-Station Network for Depicting Climate Changes’, in Schlesinger, M. (ed.),Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations, Elsevier, New York.

    Google Scholar 

  • Upton, G. J. G.: 1985,Spatial Data Analysis by Example: Vol. 1, Point Pattern Analysis and Quantitative Data, Wiley, New York.

    Google Scholar 

  • Vinnikov, K. Y., Gruza, G. V., Zakharov, V. F., Kirillov, A. A., Kovyneva, N. P., and Ran'kova, E. Y.: 1980, ‘Contemporary Variations of the Northern Hemisphere Climate’,Sov. Meteorol. Hydrol. 6, 5–17.

    Google Scholar 

  • Willmott, C. J. and Robeson, S. M.: 1994, ‘Climatologically Aided Interpolation of Terrestrial Air Temperatures’,Intl. J. Climatol. (in press).

  • Willmott, C. J., Robeson, S. M., and Feddema, J. J.: 1991, ‘Influence of Spatially Variable Instrument Networks on Climatic Averages’,Geophys. Res. Let. 18(12, 2249–2251.

    Google Scholar 

  • Willmott, C. J., Robeson, S. M., and Feddema, J. J.: 1994, ‘Estimating Continental and Terrestrial Precipitation Averages from Raingauge Networks’,Intl. J. Climatol. 14, 403–414.

    Google Scholar 

  • Willmott, C. J., Rowe, C. M., and Philpot, W. D.: 1985, ‘Small-Scale Climate Maps: A Sensitivity Analysis of Some Common Assumptions Associated with Grid-Point Interpolation and Contouring’,Amer. Cartogr. 12(1, 5–16.

    Google Scholar 

  • Woodruff, S. D., Slutz, R. J., Jenne, R. J., and Steurer, P. M.: 1987, ‘A Comprehensive Ocean-Atmosphere Data Set’,Bull. Amer. Met. Soc. 68, 1239–1250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robeson, S.M. Resampling of network-induced variability in estimates of terrestrial air temperature change. Climatic Change 29, 213–229 (1995). https://doi.org/10.1007/BF01094017

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01094017

Keywords

Navigation