Skip to main content
Log in

Thermal stability of the cellulose synthase complex of Acetobacter xylinum

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The thermal stability of the cellulose synthase complex of Acetobacter xylinum has been analyzed in terms of enzyme activity loss as well as detection of its two major components (83 kDa and 93 kDa polypeptides) in polyacrylamide gels under different electrophoretic sample treatment conditions. The cellulose synthase complex intrinsically is a thermally unstable enzyme and quickly loses its in vitro activity beyond 35° C. The 83 kDa polypeptide has been found to be more labile than the 93 kDa polypeptide. When boiled in lithium dodecyl sulfate (LDS) buffer, the 83 kDa polypeptide is destroyed through peptide hydrolysis while the 93 kDa polypeptide remains uncleaved. The 83 kDa polypeptide is destroyed in LDS buffer at elevated temperatures beyond 55° C. When boiled in the absence of LDS buffer, the 83 kDa polypeptide is completely aggregated, while the 93 kDa polypeptide is only partially aggregated. In the absence of LDS buffer, the complete thermal aggregation of the 83 kDa polypeptide occurs at elevated temperatures beyond 85° C. The aggregation process has been quantitatively analyzed by a newly‐introduced quantitative index, Td (the temperature at which half the quantity of 83 kDa polypeptide disappears due to aggregation). The Td determined for the 83 kDa polypeptide in the product‐entrapped fraction is 48° C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahern, T. J. and Klibanov, A. M. (1985) The mechanism of irreversible enzyme inactivation at 100°C. Science 228, 1280–1284.

    Google Scholar 

  • Arakawa, T., Hung, L. and Narhi, L. O. (1992) Stability of fungal α-amylase in sodium dodecyl sulfate. J. Prot. Chem. 11, 111–117.

    Google Scholar 

  • Beyreuther, K., Bieseler, B., Erhring, R., Griesser, H-W., Mieschendahl, M., Müller-Hill, B. and Triesch, I. (1980) Investigation of the structure and function of lactose permease of Escherichia coli. Biochem. Soc. Transactions 8, 675–576.

    Google Scholar 

  • Bond, J. S. and Butler, P. E. (1987) Intracellular protease. Ann. Rev. Biochem. 56, 333–364.

    Google Scholar 

  • Bureau, T. E. and Brown, R.M., Jr. (1987) In vitro synthesis of cellulose II from a cytoplasmic membrane fraction of Acetobacter xylinum. Proc. Natl. Acad. Sci. 84, 6985–6989.

    Google Scholar 

  • Chen, H. P. and Brown, R. M., Jr. (1996) Immunochemical studies of the cellulose synthase complex in Acetobacter xylinum. Cellulose 3: 63–75.

    Google Scholar 

  • Chenault, S. S. and Earhart, C. F. (1992) Identification of hydrophobic proteins FepD and FepG of the Escherichia coli ferrienterobactin permease. J. Gen. Microbiol. 138, 2167–2171.

    Google Scholar 

  • Fágáin, C. Ó. and O'Kennedy, R. (1991) Functionally-stabilized proteins-a review. Biotech. Adv. 9, 351–409.

    Google Scholar 

  • Geiger, T. and Clarke, S. (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. J. Biol. Chem. 262, 785–794.

    Google Scholar 

  • Gimel, J. C., Durand, D. and Nicolai, T. (1994) Structure and distribution of aggregates formed after heat-induced denaturation of globular proteins. Macromol. 27, 583–589.

    Google Scholar 

  • Ito, K. (1984) Identification of the secY (prlA) gene product involved in protein export in Escherichia coli. Mol. Gen. Genetics 197, 204–208.

    Google Scholar 

  • Köster W. and Braun, V. (1986) Iron hydroxamate transport of Escherichia coli: Nucleotide sequence of the fluB gene and identification of the protein. Mol. Gen. Genetics 204, 435–442.

    Google Scholar 

  • Laemmli, E. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Google Scholar 

  • Lin, F. C. and Brown, R. M., Jr. (1989) Purification of cellulose synthase from Acetobacter xylinum. In: Cellulose and Wood-Chemistry and Technology (C. Schuerch, ed.), Wiley, New York, pp. 473–492.

    Google Scholar 

  • Lin, F. C., Brown, R. M., Jr., Drake, R. R., Jr. and Haley, B. E. (1990) Identification of the UDP-glc binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-(14C)UDP-Glc. J. Biol. Chem. 265, 4782–4784.

    Google Scholar 

  • Maizel, J. V., Jr. (1971) Gel electrophoresis of viral proteins. In: Methods of Virology (K. Maramorosch and H. Koprowski, eds), Vol. 5, Academic Press, New York, pp. 179–246.

    Google Scholar 

  • Mayer, R., Ross, P., Weinhouse, H., Amikam, D., Volman, G., Ohana, P., Calhoon, R. D., Wong, H. G., Emerick, A. W. and Benziman, M. (1991) Polypeptide composition of bacterial cyclic diguanylic acid dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. Proc. Natl. Acad. Sci. 88, 5472–5476.

    Google Scholar 

  • Mozhaev, V. V. and Martinek, K. (1982) Inactivation and reactivation of proteins. Enz. Microb. Technol. 4, 299–309.

    Google Scholar 

  • Nosoh, Y. and Sekiguchi, T. (1990) Protein engineering for thermostability. Trends Biotech. 8, 16–20.

    Google Scholar 

  • Ross, P., Mayer, R. and Benziman, M. (1991) Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55, 35–58.

    Google Scholar 

  • Saxena, I. M., Lin, F. C. and Brown, R. M., Jr. (1990) Cloning and sequencing of the cellulose synthase catalytic subunit gene of A. xylinum. Plant Mol. Biol. 15, 673–683.

    Google Scholar 

  • Saxena, I.M., Lin, F. C. and Brown, R.M., Jr. (1991) Identification of a new gene in an operon fro cellulose biosynthesis in Acetobacter xylinum. Plant Mol. Biol. 16, 947–954.

    Google Scholar 

  • Saxena, I.M., Kudlicka, K., Okuda, K. and Brown, R.M., Jr. (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: Implications for cellulose crystallization. J. Bacteriol. 176, 5735–5752.

    Google Scholar 

  • Straus, J. W., Migaki, G. and Finch, M. T. (1992) An assessment of proteolytic enzyme in Tetrahymena thermophila. J. Protozool. 39, 655–662.

    Google Scholar 

  • Tombes, M. P. (1985) Stability of enzymes. J. Appl. Biochem. 7, 3–24.

    Google Scholar 

  • Towbin, H., Staehelin, T. and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. 76, 4350–4354.

    Google Scholar 

  • Weber, K., Pringle, J. R. and Osborn, M. (1972) Measurement of the molecular weight by electrophoresis on SDS-acrylamide gel. In: Methods in Enzymology (C. H. W. Hirs and S. N. Timasheff, eds), Vol. 26, Academic Press, New York, pp. 3–27.

    Google Scholar 

  • Zale, S. E. and Klibanov, A. M. (1986) Why does ribonuclease irreversibly inactivate at high temperatures? Biochem. 25, 5432–5444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

chen, H.P., Brown, R.M. Thermal stability of the cellulose synthase complex of Acetobacter xylinum. Cellulose 6, 137–152 (1999). https://doi.org/10.1023/A:1009208610922

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009208610922

Navigation