Skip to main content
Log in

A multifractal analysis of lidar measured water vapour

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Accurate and fast-response measurements of space-time observations of specific humidity were made above a drying land surface at the University of California at Davis, using the Los Alamos water Raman-lidar. In an attempt to quantify the space-time intermittency features of turbulent flows in the lower atmosphere, a multifractal analysis of these water vapour measurements was performed. The structure of the specific humidity, θ(x, t), was analyzed quantifying a scalar gradient measure\(( \sim [{\text{grad }}\theta {\text{]}}^{\text{2}} )\) both in time and space, for all possible one-dimensional cuts, i.e.\(\chi _t (x,t) = [\partial \theta (x,t)/\partial t]^2\) and\(\chi _x (x,t) = [\partial \theta (x,t)/\partial x]^2\). The results confirm the multifractal nature of this scalar gradient measure (a type of scalar dissipation rate) and show that humidity measurements at fixed times (χx) are more intermittent (e.g. have less entropy dimension) than those at fixed locations in space (χt). Similar multifractal behaviour of the spatial data, with and without a transformation from the observed wind velocities, supports the validity of Taylor's hypothesis for the studied fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anselmet, F., Gagne, Y., Hopfinger, E. J., and Antonia, R. A.: 1984, ‘High-Order Velocity Structure Functions in Turbulent Shear Flows’,J. Fluid Mech. 140, 63–89.

    Google Scholar 

  • Borgas, M. S.: 1992, ‘A Comparison of Intermittency Models in Turbulence’,Phys. Fluids A 4(9), 2055–2061.

    Google Scholar 

  • Chhabra, A. B. and Jensen, R.: 1989, ‘Direct Determination of thef(α) Singularity Spectrum’,Phys. Rev. Lett. 62, 1327–1330.

    Google Scholar 

  • Chhabra, A. B. and Sreenivasan, K. R.: 1991a, ‘Probabilistic Multifractals and Negative Dimensions’, in L. Sirovich (ed.),New Perspectives in Turbulence, Springer-Verlag, New York, pp. 271–288.

    Google Scholar 

  • Chhabra, A. B. and Sreenivasan, K. R.: 1991b, ‘Negative Dimensions: Theory, Computation, and Experiment’,Physical Review A 43(2), 1114–1117.

    Google Scholar 

  • Cooney, J., Petri, K., and Salik, A.: 1985), ‘Measurement of High Resolution Atmospheric Watervapour Profiles by Use of a Solar-Blind, Raman-Lidar’,Appl. Optics. 24, 104–108.

    Google Scholar 

  • Eichinger, W. E., Cooper, D. I., Parlange, M. B., and Katul, G. G.: 1993 ‘The Application of a Scanning Water Raman-Lidar as a Probe of the Atmospheric Boundary Layer’,I.E.E.E. Trans. Geoscience and Remote Sensing 31(1), 70–79.

    Google Scholar 

  • Eichinger, W. E., Cooper, D. I., Archuletta, F. L., Hof, D. E., Holtkamp, D. B., Karl, R. R., Quick, C. R., and Tiee, J. J.: 1994, ‘Development of a Scanning, Solar-Blind, Water Raman-Lidar’,Applied Optics 33(18), 3923–3932.

    Google Scholar 

  • Feder, J.: 1988,Fractals, Plenum Press, New York, 283 pp.

    Google Scholar 

  • Frisch, U. and Parisi, G.: 1985, ‘A Multifractal Model of Intermittency’, in M. Ghil, R. Benzi and G. Parisi (eds.),Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, North-Holland, Amsterdam, pp. 84–88.

    Google Scholar 

  • Frisch, U., Sulem, P. L., and Nelkin, M.: 1978, ‘A Simple Dynamical Model of Intermittent Fully Developed Turbulence’,J. Fluid Mech. 87, 719–724.

    Google Scholar 

  • Gabriel, P., Lovejoy, S., Schertzer, D., and Austin, G.: 1988, ‘Multifractal Analysis of Resolution Dependence in Satellite Imagery’,J. Geophys. Res. 15, 1373–1376.

    Google Scholar 

  • Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., and Shraiman, B. I.: 1986, ‘Fractal Measures and Their Singularities: The Characterization of Strange Sets’,Physical Rev. A 33, 1141–1151.

    Google Scholar 

  • Hunt, J. C. R., Phillips, O. M., and Williams, D. (eds.): 1991,Turbulence and Stochastic Processes: Kolmogorov's Ideas 50 Years On, The Royal Society, London, 240 pp.

    Google Scholar 

  • Kolmogorov, A. N.: 1941, ‘The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number’,Dokl. Akad. Nauk SSSR 30(4), 399–303.

    Google Scholar 

  • Kolmogorov, A. N.: ‘A Refinement of Previous Hypothesis Concerning the Local Structure of Turbulence of a Viscous Incompressible Fluid at High Reynolds Number’,J. Fluid Mech. 13, 82–95.

  • Lavallée, D., Lovejoy, S., Schertzer, D., and Ladoy, P.: 1991 a, “Nonlinear Variability and Landscape Topography: Analysis and Simulation’, in L. De Cola and N. Lam (eds.),Fractals in Geographys, Prentice-Hall, pp. 171–205.

  • Lavallée, D., Lovejoy, S., and Schertzer, D.: 1991b, On the Determination of the Codimension Function’, in D. Schertzer and S. Lovejoy (eds.),Non-Linear Variability in Geophysics: Scaling and Fractals, Kluwer, pp. 99–110.

  • Lovejoy, S. and Schertzer, D.: 1990a, ‘Our Multifractal Atmosphere: A Unique Laboratory for Non-Linear Dynamics’,Physics in Canada 46(4), 62–71.

    Google Scholar 

  • Lovejoy, S. and Schertzer, D.: 1990b, ‘Multifractals, Universality Classes and Satellite and Radar Measurements of Clouds and Rain Fields’,J. Geophys. Res. 95, 2021.

    Google Scholar 

  • Mandelbrot, B.: 1974, ‘Intermittent Turbulence in Self-Similar Cascades: Divergence of High Moments and Dimension of the Carrier’,J. Fluid Mech. 62, 331–358.

    Google Scholar 

  • Mandelbrot, B.: 1983,The Fractal Geometry of Nature, Freeman, New York, 468 pp.

    Google Scholar 

  • Mandelbrot, B.: 1989, ‘Multifractal Measures, Especially for the Geophysicist’, in C. H. Sholtz and B. B. Mandelbrot (eds.),Fractals in Geophysics, Birkhauser Verlag, Basel, pp. 5–42.

    Google Scholar 

  • Mandelbrot, B.: 1990, ‘Negative fractal Dimensions and Multifractals’,Physica A,163, 306–315.

    Google Scholar 

  • Mandelbrot, B.: 1991, ‘Random Multifractals: Negative Fractal Dimensions and the Resulting Limitations of the Thermodynamic Formalism’,Proc. R. Soc. Lond. A 434, 79–88.

    Google Scholar 

  • McCauley, J. L.: 1990, ‘Introduction to Multifractals in Dynamical Systems Theory and Fully Developed Fluid Turbulence’,Physics Reports 189(5), 225–266.

    Google Scholar 

  • Meneveau, C. and Sreenivasan, K. R.: 1987, ‘A Simple Multifractal Cascade Model for Fully Developed Turbulence’,Physical Rev. Letters 59, 1424–1427.

    Google Scholar 

  • Novikov, E. A. and Stewart, R.: 1964, ‘Intermittency of Turbulence and Spectrum of Fluctuations in Energy Dissipation’,Izv. Akad. Nauk. SSSR. Ser. Geofiz. 3, 408–412.

    Google Scholar 

  • Parlange, M. B. and Katul, G. G.: 1992, ‘An Advection-Aridity Evaporation Model’,Water Resour Res. 28(1):127–132.

    Google Scholar 

  • Puente, C. E., Romero, A. H., Obregón, N., and Vargas, M. F.: 1995, ‘Deterministic Multifractals with Negative Dimensions?’,J. Hydrology, In press.

  • Schertzer, D. and Lovejoy, S.: 1983, “Elliptical Turbulence in the Atmosphere”, inProc. of the 4th Symposium on Turbulent Shear Flows, Karlshule, West Germany, pp. 11.1–11.8.

  • Schertzer, D. and Lovejoy, S.: 1987, ‘Physical Modeling and Analysis of Rain and Clouds by Anisotropic Scaling of Multiplicative Processes’,J. Geophys. Res. D 92(8), 9693–9714.

    Google Scholar 

  • Schertzer, D. and Lovejoy, S.: 1989, ‘Nonlinear Variability in Geophysics: Multifractal Analysis and Simulation’, in L. Pietronero (ed.),Fractals: Physical Origin and Consequences, Plenum, p. 49.

  • Sreenivasan, K. R., Prasad, R. R., Meneveau, C., and Ramshankar, R.: 1989, ‘The Fractal Geometry of Interfaces and the Multifractal Distribution of Dissipation in Fully Turbulent Flows’, in C. H. Sholtz and B. B. Mandelbrot (eds.),Fractals in Geophysics, Birkhauser Verlag, Basel, pp. 43–60.

    Google Scholar 

  • Sreenivasan, K. R.: 1991, ‘Fractals and Multifractals in Fluid Turbulence’,Annu. Rev. Fluid Mech. 23, 539–600.

    Google Scholar 

  • Sreenivasan, K. R. and Kailasnath, P.: 1993, ‘An Update on the Intermittency Exponent in Turbulence’,Phys. Fluids A 5(2), 512–514.

    Google Scholar 

  • Sirovich, L. (ed.):New Perspectives in Turbulence, Springer-Verlag, New York, 367 pp.

  • Taylor, G. I.: 1938, ‘The Spectrum of Turbulence’,Proc. Roy. Soc. A 164(919), 476–490.

    Google Scholar 

  • Tessier, Y., Lovejoy, S., and Schertzer, D.: 1993a, ‘Universal Multifractals: Theory and Observations for Rain and Clouds’,J. Appl. Meteorol. 32, 223–250.

    Google Scholar 

  • Tessier, Y., Lovejoy, S., Schertzer, D., Lavallée, D., and Kerman, B.: 1993b, ‘Universal Multifractal Indices for the Ocean Surface at Far Red Wavelengths’,Geophys. Res. Lett. 20(12), 1167–1170.

    Google Scholar 

  • Wilson, J., Schertzer, D., and Lovejoy, S.: 1991, ‘Continuous Multiplicative Cascade Models of Rain and Clouds’, in D. Schertzer and S. Lovejoy (eds.),Non-Linear Variability in Geophysics: Scaling and Fractals, Kluwer, pp. 185–207.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinzón, J.E., Puente, C.E., Parlange, M.B. et al. A multifractal analysis of lidar measured water vapour. Boundary-Layer Meteorol 76, 323–347 (1995). https://doi.org/10.1007/BF00709237

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00709237

Keywords

Navigation