Skip to main content
Log in

Similarity scaling applied to sodar observations of the convective boundary layer above an irregular hill

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Nine profiles of the temperature structure parameter C 2T and the standard deviation of vertical velocity fluctuations (Σ w) in the convective boundary layer (CBL) were obtained with a monostatic Doppler sodar during the second intensive field campaign of the First ISLSCP Field Experiment in 1987. The results were analyzed by using local similarity theory. Local similarity curves depend on four parameters: the height of the mixed layer (z i ), the depth of the interfacial layer (δ), and the temperature fluxes at the top of the mixed layer (Q i ) and the surface (Q o). Values of these parameters were inferred from sodar data by using the similarity curve for C 2T and observations at three points in its profile. The effects of entrainment processes on the profiles of C 2T and Σ wnear the top of the CBL appeared to be described well by local similarity theory. Inferred estimates of surface temperature flux, however, were underestimated in comparison to fluxes measured by eddy correlation. The measured values of Σ wappeared to be slightly smaller than estimates based on available parmeterizations. These discrepancies might have been caused by experimental error or, more likely, by the distortion of turbulence structure above the site by flow over the nonuniform terrain at the observation site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burke, S. D.: 1981, ‘Temperature and Humidity Effects on Refractive Index Fluctuations in the Upper Regions of the Convective Boundary Layer’, J. Appl. Meteorol. 37, 1573–1585.

    Google Scholar 

  • Caughey, S. J. and Palmer, S. G.: 1979, ‘Some Aspects of Turbulence Structure Through the Depth and the Convective Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 105, 811–827.

    Google Scholar 

  • Corrsin, S.: 1951, ‘On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence’, J. Appl. Phys. 22, 469–1222.

    Google Scholar 

  • Coulter, R. L.: 1979, ‘A Comparison of Three Methods for Measuring Mixing-Layer Height’, J. Appl. Meteorol. 18, 1495–1499.

    Google Scholar 

  • Coulter, R. L. and Wesely, M. L.: 1980, ‘Estimates of Surface Heat Flux from Sodar and Laser Scintillations Measurements in the Unstable Boundary Layer’, J. Appl. Meteorol. 19, 1209–1222.

    Google Scholar 

  • Deardorff, J.: 1970, ‘Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer’, J. Atmos. Sci. 27, 1211–1213.

    Google Scholar 

  • Driedonks, A. G. M. and Tennekes, H.: 1984, ‘Entrainment Effects in the Well-Mixed Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 30, 75–105.

    Google Scholar 

  • Druihlett, A., Frangi, J. P., Guedalia, D., and Fontain, J.: 1983, ‘Experimental Studies of the Turbulence Structure Parameters of the Convective Boundary Layer’, J. Climate Appl. Meteorol. 22, 594–608.

    Google Scholar 

  • Dubosclard, G. L.: 1982, ‘A Sodar Study of the Temperature Structure Parameter in the Convective Boundary Layer’, Boundary-Layer Meteorol. 22, 325–334.

    Google Scholar 

  • Fairall, C. W., Markson, R., Schaacher, G. E., and Davidson, K. L.: 1980, ‘An Aircraft Study of Turbulence Dissipation Rate and Temperature Structure Function in the Unstable Marine Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 19, 453–469.

    Google Scholar 

  • Fairall, C. W.: 1987, ‘A Top-Down and Bottom-Up Diffusion Model of C 2T and C 2Q in the Entraining Convective Boundary Layer’, J. Atmos. Sci. 44, 1009–1017.

    Google Scholar 

  • Hicks, B. B., Matt, D. R., McMillen, R. T., Womack, J. D., Wesely, M. L., Hart, R. L., Cook, D. R., Lindberg, S. E., de Pena, R. G., and Thomson, D. W.: 1989, ‘A Field Investigation of Sulfate Fluxes to a Deciduous Forest’, J. Geophys. Res. 94, 13,003–13,011.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Cote, O. R., Izumi, Y., and Caughey, S. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2169.

    Google Scholar 

  • Kumar, R. and Adrian, R. J.: 1986, ‘Higher Order Moments in the Entrainment Zone of Penetrative Thermal Convection’, J. Heat Transfer 108, 323–329.

    Google Scholar 

  • Lenschow, D. H.: 1974, ‘Model of the Height Variation of the Turbulent Kinetic Energy Budget in the Unstable Planetary Boundary Layer’, J. Atmos. Sci. 31, 465–474.

    Google Scholar 

  • Neff, W. D.: 1975, ‘Quantitative Evaluation of Acoustic Echoes from the Planetary Boundary Layer’, Tech. Rep. ERL 322-WPL, National Oceanic and Atmospheric Administration, Boulder, CO, 34 pp. [Available as PB 253–207 from the National Technical Information Center, Springfield, VA.]

    Google Scholar 

  • Neff, W. D. and Coulter, R. L.: 1988, in D. H. Lenschow (ed.), Acoustic Remote Sensing, Probing the Atmospheric Boundary Layer, Amer. Meteorol Soc. pp. 201–235.

  • Sellers, P. J., Hall, F. G., Asrar, G., Strebel, D. E., and Murphy, R. E.: 1988, ‘The First ISLSCP Field Experiment (FIFE)’, Bull. Amer. Meteorol. Soc. 69, 22–27.

    Google Scholar 

  • Sorbjan, Z.: 1988, ‘Local Similarity in the Convective Boundary Layer’, Boundary-Layer Meteorol. 45, 237–250.

    Google Scholar 

  • Sorbjan, Z.: 1990, ‘Similarity Scales and Universal Profiles of Statistical Moments in the Convective Boundary Layer’, J. Appl. Meteorol. 29, 762–779.

    Google Scholar 

  • Sorbjan, Z. and Coulter, R. L.: 1990, ‘Parameterization of the Convective Boundary Layer Based on Sodar Observations During the FIFE-1987 Experiment’, Proc. Ninth Symp. on Turbulence and Diffusion, Roskilde, Denmark, Amer. Meteorol. Soc.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, the Netherlands, 666 pp.

    Google Scholar 

  • Spizzichino, A.: 1974, ‘Discussion of the Operating Conditions of a Doppler Sodar’, J. Ceophys. Res. 79, 5585–5591.

    Google Scholar 

  • Tsvang, L. R.: 1969, ‘Microstructure of Temperature Fields in the Free Atmosphere’, Radio Sci. 4, 1175–1178.

    Google Scholar 

  • Weill, A., Klapisz, C., Strauss, B., Baudin, F., Jaupert, C., Van Grunderbeeck, P., and Goutorbe, J. P.: 1980, ‘Measuring Heat Flux and Structure Functions of Temperature Fluctuations with an Acoustic Doppler Sodar’, J. Appl. Meteorol. 14, 199–205.

    Google Scholar 

  • Wesely, M. L.: 1976a, ‘A Comparison of Two Optical Methods for Measuring Line Averages of Thermal Exchanges Above Warm Surfaces’, J. Appl. Meteorol. 15, 1177–1188.

    Google Scholar 

  • Wesely, M. L.: 1976b, ‘The Combined Effects of Temperature and Humidity Fluctuations on Refractive Index’, J. Appl. Meteorol. 15, 43–49.

    Google Scholar 

  • Wesely, M. L.: 1988, ‘Use of Variance Techniques to Measure Dry Air-Surface Exchange Rates’, Boundar-Layer Meteorol. 44, 13–31.

    Google Scholar 

  • Willis, G. E. and Deardorff, J. W.: 1974, ‘A Laboratory Model of Unstable Planetary Boundary Layer’, J. Atmos. Sci. 31, 1297–1307.

    Google Scholar 

  • Wyngaard, J. C., Pennell, W. T., Lenschow, D. H., and LeMone, M. A.: 1978, ‘The Temperature-Humidity Covariance Budgets in the Convective Boundary Layer’, J. Atmos. Sci. 35, 47–58.

    Google Scholar 

  • Wyngaard, J. C. and LeMone, M. A.: 1980, ‘Behavior of the Refractive Index Structure Parameter in the Entraining Convective Boundary Layer’, J. Atmos. Sci. 37, 1573–1585.

    Google Scholar 

  • Wyngaard, J. C. and Brost, R. A.: 1984, ‘Top-Down and Bottom-Up Diffusion in the Convective Boundary Layer’, J. Atmos. Sci. 41, 102–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorbjan, Z., Coulter, R.L. & Wesley, M.L. Similarity scaling applied to sodar observations of the convective boundary layer above an irregular hill. Boundary-Layer Meteorol 56, 33–50 (1991). https://doi.org/10.1007/BF00119961

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119961

Keywords

Navigation