Skip to main content
Log in

The source area influencing a measurement in the Planetary Boundary Layer: The “footprint” and the “distribution of contact distance”

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

This paper considers the ground area which affects the properties of fluid parcels observed at a given spot in the Planetary Boundary Layer (PBL). We examine two source-area functions; the “footprint,” giving the source area for a measurement of vertical flux: and the distribution of “contact distance”, the distance since a particle observed aloft last made contact with the surface. We explain why the distribution of contact distance extends vastly farther upwind than the footprint, and suggest for the extent of the footprint the inequalities: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9Lq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9W8qr0-vr% 0-viWZqaceaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyvam% aalaaabaGaamiAaaqaaiabeo8aZnaaBaaaleaacaWGxbaabeaakiaa% cIcacaWGObGaaiykaaaacqGH8aapcaWG4bGaeyipaWJaamyvaKazaa% iadaGabaqaamaaDaaajqwaacqaaiaadIgacaGGVaGabmOEayaacaGa% aiilaiaabccacaGGVbGaaiiDaiaacIgacaGGLbGaaiOCaiaacEhaca% GGPbGaai4CaiaacwgaaeaacaWGubWaaSbaaKazcaiabaGaamitaaqa% baqcKfaGaiaacIcacaWGObGaaiykaiaabYcacaqGGaGaaeiAaiaabc% cacaGGHbGaaiOyaiaac+gacaGG2bGaaiyzaiaabccacaGGZbGaaiyD% aiaackhacaGGMbGaaiyyaiaacogacaGGLbGaeyOeI0IaaiiBaiaacg% gacaGG5bGaaiyzaiaackhaaaaajqgaacGaay5EaaaakeaaaeaacaGG% 8bGaamyEaiaacYhacqGH8aapcqaHdpWCdaWgaaWcbaGaamODaaqaba% GccaGGOaGaamiAaiaacMcadaWcaaqaaiaadIhaaeaacaWGvbaaaaaa% aa!7877!\[\begin{array}{l} U\frac{h}{{\sigma _W (h)}} < x < U\left\{ {_{h/\dot z,{\rm{ }}otherwise}^{T_L (h){\rm{, h }}above{\rm{ }}surface - layer} } \right. \\ \\ |y| < \sigma _v (h)\frac{x}{U} \\ \end{array}\] where U is the mean streamwise (x) velocity, h is the observation height, ΤL is the Lagrangian timescale, Σ v and Σ w are the standard deviations of the cross-stream horizontal (y) and vertical (z) velocity fluctuations, and ż is the Lagrangian Similarity prediction for the rate of rise of the centre of gravity of a puff released at ground.

Simple analytical solutions for the contact-time and the footprint are derived, by treating the PBL as consisting of two sub-layers. The contact-time solutions agree very well with the predictions of a Lagrangian stochastic model, which we adopt in the absence of measurements as our best estimate of reality, but the footprint solution offers no improvement over the above inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carslaw, H. S., and Jaeger, J. C.: 1959 Conduction of Heat in Solids. 2nd edition, Oxford University Press. Oxford.

    Google Scholar 

  • Churchill, R. V., Brown, J. W., and Verhey, R. F.: 1974, Complex Variables and Applications, Third Edition. McGraw-Hill, New York.

    Google Scholar 

  • Dyer, A. J. and Bradley, E. F.: 1982, ‘An Alternative Analysis of Flux-Gradient Relationships at the 1976 ITCE’, Boundary-Layer Meteorol. 22, 3–19.

    Google Scholar 

  • Gash, J. H. C.: 1986, ‘A Note on Estimating the Effect of Limited Fetch on Micrometeorological Evaporation Measurements’, Boundary-Layer Meteorol. 35, 409–413.

    Google Scholar 

  • Gradshteyn, I. S. and Ryzhik, I. M.: 1980, Table of Integrals, Series, and Products, Academic Press, New York.

    Google Scholar 

  • Hicks, B. B.: 1985, ‘Behaviour of Turbulence Statistics in the Convective Boundary Layer’, J. Climate Appl. Meteorol. 24, 607–614.

    Google Scholar 

  • Leclerc, M. Y. and Thurtell, G. W.: 1990, ‘Footprint Prediction of Scalar Flux Using a Markovian Analysis’, Boundary-Layer Meteorol. 52, 247–258.

    Google Scholar 

  • Legg, B. J., Raupach, M. R., and Coppin, P. A.: 1986, ‘Experiments on Scalar Dispersion within a Model Plant Canopy, Part III: An Elevated Line Source’, Boundary-Layer Meteorol. 35, 277–302.

    Google Scholar 

  • Luhar, A. K., and Britter, R. E.: 1989. ‘A Random Walk Model for Dispersion in Inhomogeneous Turbulence in a Convective Boundary Layer’, Atmos. Envir. 23, 1911–1924.

    Google Scholar 

  • Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: 1977, ‘The Characteristics of Turbulent Velocity Components in the Surface Layer under Convective Conditions’, Boundary-Layer Meteorol. 11, 355–361.

    Google Scholar 

  • Pasquill, F.: 1972, ‘Some Aspects of Boundary Layer Description’, Q. J. Royal Meteorol. Soc. 98, 469–494.

    Google Scholar 

  • Sawford, B. L.: 1985, ‘Lagrangian Statistical Simulation of Concentration Mean and Fluctuation Fields’, J. Climate Appl. Meteorol. 24, 1152–1166.

    Google Scholar 

  • Sawford, B. L. and Guest, F. M.: 1987, ‘Lagrangian Stochastic Analysis of Flux-Gradient Relationships in the Convective Boundary Layer’, J. Atmos. Sci. 44, 1152–1165.

    Google Scholar 

  • Schmid, H. P. and Oke, T. R.: 1990, ‘A Model to Estimate the Source Area Contributing to Surface Layer Turbulence at a Point over Patchy Terrain’, Q. J. Royal Meteorol. Soc. 116, 965–988.

    Google Scholar 

  • Schuepp, P. H., Leclerc, M. Y., MacPherson, J. I. and Desjardins, R. L.: 1990, ‘Footprint Prediction of Scalar Fluxes from Analytical Solutions of the Diffusion Equation’, Boundary-Layer Meteorol. 50, 355–373.

    Google Scholar 

  • Thomson, D. J.: 1984, ‘Random Walk Modelling of Diffusion in Inhomogeneous Turbulence’, Q. J. R. Meteorol. Soc. 110, 1107–1120.

    Google Scholar 

  • Thomson, D. J.: 1987, ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows’, J. Fluid Mech. 180, 529–556.

    Google Scholar 

  • Weil, J. C.: 1990, ‘A Diagnosis of the Asymmetry in Top-Down and Bottom-Up Diffusion Using a Lagrangian Stochastic Model’, J. Atmos. Sci. 47, 501–515.

    Google Scholar 

  • Wilson, J. D.: 1982, ‘An Approximate Analytical Solution to the Diffusion Equation for Short-Range Dispersion from a Continuous Ground-Level Source’, Boundary-Layer Meteorol. 23, 85–103.

    Google Scholar 

  • Wilson, J. D., Clarkson, T. S., and Hadfield, M. G.: 1984, ‘Observations of Wind Flow and Tracer Gas Diffusion over Sand Dunes’, New Zealand J. Sci. 27, 237–242.

    Google Scholar 

  • Wilson, J. D., Legg, B. J., and Thomson, D. J.: 1983, ‘Calculation of Particle Trajectories in the Presence of a Gradient in Turbulent-Velocity Variance’, Boundary-Layer Meteorol. 27, 163–169.

    Google Scholar 

  • Wilson, J. D., Thurtell, G. W., and Kidd, G. E.: 1981, ‘Numerical Simulation of Particle Trajectories in Inhomogeneous Turbulence, III: Comparison of Predictions with Experimental Data for the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 21, 443–463.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, J.D., Swaters, G.E. The source area influencing a measurement in the Planetary Boundary Layer: The “footprint” and the “distribution of contact distance”. Boundary-Layer Meteorol 55, 25–46 (1991). https://doi.org/10.1007/BF00119325

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00119325

Keywords

Navigation