Skip to main content
Log in

The inland boundary layer at low latitudes

I. The nocturnal jet

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Observations from the Koorin boundary-layer experiment in Australia (latitude 16 °S) were analysed in a study of the nocturnal jet development. For geostrophic winds in the range 10–20 m s-1, ageostrophic wind magnitudes of 5–10m s-1 were common above the surface layer near sunset, with cross-isobar flow angles of about 40 °. The jet that then developed by midnight was probably the result of these large ageostrophic winds, strong surface cooling and favourable baroclinity and sloping terrain.

The analysis is supported by numerical model calculations with special emphasis on the role of long-wave radiative cooling on turbulent decay. Decay is rapid in the presence of radiation, although there is little influence on stress divergence levels.

Evidence of sea-breeze influences on the jet evolution, and on features of deeply penetrating sea breezes in general, will be presented and discussed in part 2 of this study (submitted to Boundary-Layer Meteorol.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, S. C.: 1980, ‘Observational Characteristics of the Low-Level Jet at Daly Waters During Project Koorin’, Aust. Meteorol. Mag. 28, 47–56.

    Google Scholar 

  • André, J. C., De Moor, G., LaCarrère, P., Therry, G., and R. Du Vachat: 1978, ‘Modeling the 24-hr Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer’, J. Atmos. Sci. 35, 1861–1883.

    Google Scholar 

  • Arya, S. P. S.: 1977, ‘Suggested Revisions to Certain Boundary-Layer Parameterization Schemes Used in Atmospheric Circulation Models’, Monthly Weather Rev. 105, 215–227.

    Google Scholar 

  • Blackadar, A. K.: 1957, ‘Boundary-Layer Wind Maxima and their Significance for the Growth of Nocturnal Inversions’, Bull. Amer. Meteorol. Soc. 38, 283–290.

    Google Scholar 

  • Blackadar, A. K.: 1979, in J. Pfafflin and E. Ziegler (eds.), ‘High-Resolution Models of the Planetary Boundary Layer’, Advances in Environmental Science and Engineering. Vol. 1. Gordon and Breach, 276 pp.

  • Brook, R. R.: 1985, ‘The Koorin Nocturnal Low-Level Jet’, Boundary-Layer Meteorol. (in press).

  • Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably Stratified Planetary Boundary Layer’, J. Atmos. Sci. 35, 1427–1440.

    Google Scholar 

  • Caughey, S. J., Wyngaard, J. C., and Kaimal, J. C.: 1979, ‘Turbulence in the Evolving Stable Boundary Layer’, J. Atmos. Sci. 36, 1041–1052.

    Google Scholar 

  • Clarke, R. H.: 1983, ‘Fair Weather Nocturnal Inland Wind Surges and Atmospheric Bores: Part 1 Nocturnal Wind Surges’, Aust. Meteorol. Mag. 31, 133–145.

    Google Scholar 

  • Clarke, R. H. and Brook, R. R.: 1979, ‘The Koorin Expedition — Atmospheric Boundary-Layer Data over Tropical Savannah Land’, Dept. of Science, Canberra.

    Google Scholar 

  • Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, ‘The Wangara Experiment: Boundary-Layer Data’, Tech. paper 19, Div. Meteorol. Phys., CSIRO, Australia.

    Google Scholar 

  • Dutton, J. A. and Fichtl, G. H.: 1969, ‘Approximate Equations of Motion for Gases and Liquids’, J. Atmos. Sci. 26, 241–254.

    Google Scholar 

  • Estoque, M. A.: 1973, in D. A. Haugen (ed.), ‘Workshop on Micrometeorology’, Amer. Meteorol. Soc. 392 pp.

  • Garratt, J. R.: 1978a, ‘Flux Profile Relations above Vegetation’, Quart. J. Roy. Meteorol. Soc. 104, 199–212.

    Google Scholar 

  • Garratt, J. R.: 1978b, ‘Transfer Characteristics for a Heterogeneous Surface of Large Aerodynamic Roughness’, Quart. J. Roy. Meteorol. Soc. 104, 491–502.

    Google Scholar 

  • Garratt, J. R.: 1980, ‘Surface Influence Upon Vertical Profiles in the Atmospheric Near-Surface Layer’, Quart. J. Roy. Meteorol. Soc. 106, 803–819.

    Google Scholar 

  • Garratt, J. R.: 1982, ‘Observations in the Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 22, 21–48.

    Google Scholar 

  • Garratt, J. R.: 1983, ‘Surface Influence upon Vertical Profiles in the Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 26, 69–80.

    Google Scholar 

  • Garratt, J. R. and Francey, R. J.: 1978, ‘Bulk Characteristics of Heat Transfer in the Unstable, Baroclinic Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 15, 399–421.

    Google Scholar 

  • Garratt, J. R. and Brost, R. A.: 1981, ‘Radiative Cooling Effects Within and above the Nocturnal Boundary Layer’, J. Atmos. Sci. 38, 2730–2746.

    Google Scholar 

  • Garratt, J. R., Wyngaard, J. C., and Francey, R. J.: 1982, ‘Winds in the Atmospheric Boundary Layer-Prediction and Observation’, J. Atmos. Sci. 39, 1307–1316.

    Google Scholar 

  • Garratt, J. R. and Physick, W. L.: 1985, ‘The Inland Boundary Layer at Low Latitudes: II Sea-Breeze Influence’, submitted to Boundary-Layer Meteorol.

  • Hess, G. D., Hicks, B. B., and Yamada, T.: 1981, ‘The Impact of the Wangara Experiment’, Boundary-Layer Meteorol. 20, 135–174.

    Google Scholar 

  • Holton, J. R.: 1967, ‘The Diurnal Boundary-Layer Wind Oscillation above Sloping Terrain’, Tellus 19, 199–205.

    Google Scholar 

  • Kerman, B. R.: 1974, ‘An Energy Budget for Waves and Turbulence within an Inversion’, Boundary-Layer Meteorol. 6, 443–458.

    Google Scholar 

  • Lettau, H. H.: 1967, ‘Small to Large-Scale Features of Boundary-Layer Structure over Mountain Slopes’, Proc. Symp. Mountain Meteorology, Atmos. Sci. Pap. 122, Colorado State University.

  • Mahrt, L.: 1981, ‘The Early Evening Boundary-Layer Transition’, Quart. J. Roy. Meteorol. Soc. 107, 329–343.

    Google Scholar 

  • Mahrt, L. and Lenschow, D. H.: 1976, ‘Growth Dynamics of the Convective Mixed Layer’, J. Atmos. Sci. 33, 41–51.

    Google Scholar 

  • Mahrt, L., Heald, R. C., Lenschow, D. H., and Stankov, B. B.: 1979, ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 17, 247–264.

    Google Scholar 

  • McNider, R. T. and Pielke, R. A.: 1981, ‘Diurnal Boundary-Layer Development over Sloping Terrain’, J. Atmos. Sci. 38, 2198–2212.

    Google Scholar 

  • Nieuwstadt, F. T. M. and Tennekes, H.: 1981, ‘A Rate Equation for the Nocturnal Boundary-Layer Height’, J. Atmos. Sci. 38, 1418–1428.

    Google Scholar 

  • Physick, W. L.: 1980, ‘Numerical Experiments on the Inland Penetration of the Sea Breeze’, Quart. J. Roy. Meteorol. Soc. 106, 735–746.

    Google Scholar 

  • Thorpe, A. J. and Guymer, T. H.: 1977, ‘The Nocturnal Jet’, Quart. J. Roy. Meteorol. Soc. 103, 633–653.

    Google Scholar 

  • Wipperman, F.: 1973, ‘Numerical Study on the Effects Controlling the Low-Level Jet’, Beitr. Phys. Atmos. 46, 137–154.

    Google Scholar 

  • Wyngaard, J. C.: 1975, ‘Modeling the Planetary Boundary Layer — Extension to the Stable Case’, Boundary-Layer Meteorol. 9, 441–460.

    Google Scholar 

  • Zeman, O.: 1979, ‘Parameterization of the Dynamics of Stable Boundary Layers and Nocturnal Jets’, J. Atmos. Sci. 36, 792–804.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garratt, J.R. The inland boundary layer at low latitudes. Boundary-Layer Meteorol 32, 307–327 (1985). https://doi.org/10.1007/BF00121997

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121997

Keywords

Navigation