Skip to main content
Log in

A New Approach to Backward Error Analysis of Lu Factorization

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A new backward error analysis of LU factorization is presented. It allows to obtain a sharper upper bound for the forward error and a new definition of the growth factor that we compare with the well known Wilkinson growth factor for some classes of matrices. Numerical experiments show that the new growth factor is often of order approximately log2 n whereas Wilkinson's growth factor is of order n or \(\sqrt n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Amodio and F. Mazzia, Backward error analysis of cyclic reduction for the solution of tridiagonal linear systems, Math. Comp., 62 (1994), pp. 601–617.

    Google Scholar 

  2. J. L. Barlow and H. Zha, Growth in Gaussian elimination, orthogonal matrices, and two-norm, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 807–815.

    Google Scholar 

  3. A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson, An estimate for the condition number of a matrix, SIAM J. Numer. Anal., 16 (1979), pp. 368–375.

    Google Scholar 

  4. C. W. Cryer, Pivot size in Gaussian elimination, Numer. Math., 12 (1968), pp. 335–345.

    Google Scholar 

  5. J. Day and B. Peterson, Growth in Gaussian elimination, Amer. Math. Monthly, (1988), pp. 489–513.

  6. C. de Boor and A. Pinkus, Backward error analysis for totally positive linear systems, Numer. Math., 27 (1977), pp. 485–490.

    Google Scholar 

  7. J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

    Google Scholar 

  8. G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, 1996.

    Google Scholar 

  9. N. Gould, On growth in Gaussian elimination with complete pivoting, SIAM J. Matrix Anal. Appl., 12 (1991), pp. 354–361.

    Google Scholar 

  10. N. J. Higham and D. J. Higham, Large growth factors in Gaussian elimination with pivoting, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 155–164.

    Google Scholar 

  11. N. J. Higham, The accuracy of solutions to triangular systems, SIAM J. Numer. Anal., 26 (1989), pp. 1252–1265.

    Google Scholar 

  12. N. J. Higham, Bounding the error in Gaussian elimination for tridiagonal systems, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 521–530.

    Google Scholar 

  13. N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.

    Google Scholar 

  14. V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Academic Press, New York, 1988.

    Google Scholar 

  15. R. D. Skeel, Scaling for numerical stability in Gaussian elimination, J. Assoc. Comput. Mach., 26 (1979), pp. 494–526.

    Google Scholar 

  16. R. D. Skeel, Iterative refinement implies numerical stability for Gaussian elimination, Math. Comp., 35 (1980), pp. 817–832.

    Google Scholar 

  17. L. N. Trefethen and R. S. Schreiber, Average-case stability of Gaussian elimination, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 335–360.

    Google Scholar 

  18. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amodio, P., Mazzia, F. A New Approach to Backward Error Analysis of Lu Factorization. BIT Numerical Mathematics 39, 385–402 (1999). https://doi.org/10.1023/A:1022358300517

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022358300517

Navigation