Skip to main content
Log in

Following paths through turning points

  • Part II Numerical Mathematics
  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The use of the continuation principle in the solution of systems of nonlinear equations frequently leads to the need to follow trajectories through turning points. This can be done by using a different parametrization at every step along the trajectory. We show how to construct accurate predictors and adaptive steplength estimators for use in predictor-corrector algorithms which follow trajectories in this way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Abbott,Numerical Continuation Methods for Nonlinear Equations and Bifurcation Problems, Thesis, Australian National University, Canberra, 1977.

    Google Scholar 

  2. J. P. Abbott,Computing solution arcs of nonlinear equations with a parameter, Comp. J. 23 (1980), 85–89.

    Google Scholar 

  3. C. den Heijer,The Numerical Solution of Nonlinear Operator Equations by Imbedding Methods, Mathematical Centre Tracts, 107, Mathematisch Centrum, Amsterdam, 1979.

    Google Scholar 

  4. C. den Heijer and W. C. Rheinboldt,On steplength algorithms for a class of continuation methods, SIAM J. Numer. Anal. 18 (1981), 925–948.

    Google Scholar 

  5. P. Deuflhard,A stepsize control for continuation methods and its special application to multiple shooting techniques, Numer. Math. 33 (1979), 115–146.

    Google Scholar 

  6. J. Hackl, H. Wacker and W. Zulehner,An efficient stepsize control for continuation methods, BIT 20 (1980), 475–485.

    Google Scholar 

  7. W. M. Häussler and W. Bolkart,Affin-invariante Konvergenzsätze und automatische Schrittweitensteurung für Einbettungsverfahren, Proc. Third Symposium on Operations Research, Section I, 303–312, Mannheim, 1978.

  8. H. B. Keller,Global homotopies and Newton methods, Recent Advances in Numerical Analysis (C. de Boor and G. Golub, eds.), 73–94, Academic Press, London, 1978.

    Google Scholar 

  9. M. Kubicek,Algorithm 502: dependence of solutions of nonlinear systems on a parameter, ACM Trans. Math. Soft. 2 (1976) 98–107.

    Google Scholar 

  10. R. Menzel and H. Schwetlick, Zur Lösung parameterabhängiger nichtlinearer Gleichungen mit singulären Jacobi-Matrizen, Numer. Math. 30 (1978), 65–79.

    Google Scholar 

  11. J. Ortega and W. C. Rheinboldt,Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

    Google Scholar 

  12. G. Pönisch and H. Schwetlick,Ein lokal überlinear konvergentes Verfahren zur Bestimmung von Rückkehrpunkten implizit definierter Raumkurven, Preprint, T.U. Dresden, Dresden, 1977.

    Google Scholar 

  13. W. C. Rheinboldt,On the solution of some nonlinear equations arising in the application of finite element methods, The Mathematics of Finite Elements and Applications II (J. R. Whiteman, ed.), 465–482, Academic Press, London, 1976.

    Google Scholar 

  14. W. C. Rheinboldt,An adaptive continuation process for solving systems of nonlinear equations, Banach Center Publications, Vol. 3, 129–142, Polish Academy of Sciences, Warsaw, 1977.

    Google Scholar 

  15. W. C. Rheinboldt,Solution fields of nonlinear equations and continuation methods, SIAM J. Numer. Anal. 17 (1980), 221–237.

    Google Scholar 

  16. L. F. Shampine and M. K. Gordon,Computer Solution of Ordinary Differential Equations, W. H. Freeman and Co., San Francisco, 1975.

    Google Scholar 

  17. J. Stoer and R. Bulirsch,Introduction to Numerical Analysis, Springer, New York, 1980.

    Google Scholar 

  18. J. F. Traub and H. Wozniakowski,Convergence and complexity of Newton iteration for operator equations, J. ACM 26 (1979), 250–258.

    Google Scholar 

  19. H. Wacker,Continuation Methods, Academic Press, New York, 1978.

    Google Scholar 

  20. L. T. Watson,Algorithm 555; Chow-Yorke algorithm for fixed points or zeros of C 2 maps, ACM Trans. Math. Soft. 6 (1980), 252–259.

    Google Scholar 

  21. T. J. Ypma,Affine invariant convergence results for Newton's method, BIT 22 (1982), 108–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ypma, T.J. Following paths through turning points. BIT 22, 368–383 (1982). https://doi.org/10.1007/BF01934450

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01934450

Keywords

Navigation