Skip to main content
Log in

Time-Variations of D-Region Electron Densities, and Comparisons With Model Computations

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

An extensive series of incoherent scatter studies of the ionospheric D-region was carried out at the Arecibo radar facility during 1978 and 1979. They included several full-day sequences of electron density measurements over a range of altitudes, and also included a sequence during the serendipitous occurrence of a large solar flare. For the solar flare event simultaneous data on solar X-ray fluxes in several wavelength bands were available from the GOES-2 and ISEE-3 satellites.

In the course of development of a large ionospheric computer model at Los Alamos we have used the solar flare data as a reality check. The solar X-ray flux data were used as inputs for computing ionization rates. The model computer includes 999 chemical reactions, and also includes diffusion and transport processes. In the course of the flare studies we used the data comparisons to adjust the values of three chemical rate coefficients that were poorly known. With those adjustments the model computations fitted the data quite well.

Subsequent to the flare analysis we have been using the same model with some minor updates to compute the expected diurnal variations of the ambient D-region under conditions chosen to match those existing at the times of the incoherent scatter measurements. Comparisons of the computations and the data will be shown, and the relative importance of the several separate ionization processes will be discussed. We also compare model results with experimental data on concentrations of NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen M., Yung Y.L and Waters J.W., 1981: Vertical Transport and Photochemistry in the Terrestrial Mesosphere and Lower Thermosphere (50–120 km). J. Geophys. Res., 86, 3617-3627.

    Article  Google Scholar 

  • Baker K.D., Nagy A.F., Olsen R.O., Oran E.S., Randhawa J., Strobel D.F. and Tohmatsu T., 1977: Measurement of the Nitric Oxide Altitude Distribution in the Mid-latitude Mesosphere. J. Geophys. Res., 82, 3281-3286.

    Article  Google Scholar 

  • Barth C.A. Tobiska W.K., Siskind D.E. and Cleary D.D., 1988: Solar-Terrestrial Coupling: Lowlatitude Thermospheric Nitric Oxide. Geophys. Res. Letters, 15, 92-94.

    Article  Google Scholar 

  • Culhane J.L. and Acton L.W., 1970: A Simplified Thermal Continuum Function for the X-ray Emission from Coronal Plasmas. Mon. Not. R. Astr. Soc., 151, 141-147.

    Article  Google Scholar 

  • Frederick J.E. and Rusch D.W., 1977: On the Chemistry of Metastable Atomic Nitrogen in the F Region — from 5200 A Airglow. J. Geophys. Res., 82, 3509-3517.

    Article  Google Scholar 

  • Friedrich M., Siskind D.E. and Torkar K.M., 1997: HALOE Nitric Oxide Measurements in View of Ionospheric Data. Journal of Atmospheric and Terrestrial Physics — (submitted for publication).

  • Hays P.B. and Roble R.G., 1973: Observations of Mesospheric Ozone at Low Latitudes. Planet. Space. Sci., 21, 273-279.

    Article  Google Scholar 

  • Heaps M.G., 1978: Parametrization of the Cosmic Ray Ion-Pair Production Rate Above 18 km. Planet Space Sci., 26, 513-517.

    Article  Google Scholar 

  • Huffman R.E., Paulsen D.E., Larrabee J.C. and Cairns R.B., 1971: Decrease in D-Region O2(1Δ) Photoionization Rates Resulting from CO2 Absorption. J. Geophys. Res., 76, 1028-1038.

    Article  Google Scholar 

  • Kull A., Kopp E., Granier G. and Brasseur G., 1997: Ions and Electrons in the Lower Latitude D Region. J. Geophys. Res., 102, 9505-9716.

    Google Scholar 

  • Laurent J., LeMaitre M.-P., Besson J., Girard A., Lippens C., Muller C., Vercheval J. and Ackerman M., 1985: Middle Atmospheric NO and NO2 Observed by the Spacelab Grille Spectrometer. Nature, 315.

  • Meira L.G., 1971: Rocket Measurements of Upper Atmospheric Nitric Oxide, and their Consequences to the Lower Ionosphere. J. Geophys. Res., 76, 202-208.

    Article  Google Scholar 

  • Ogawa T. and Tohmatsu T., 1966: Photoelectronic Processes in the Upper Atmosphere, II. The Hydrogen and Helium Ultraviolet Glow as an Origin of the Nighttime Ionosphere. Rep. Ionos. Space Res. Japan, 20 (4), 395-417.

    Google Scholar 

  • Park C. and Menees G.P., 1978: Odd Nitrogen Production by Meteoroids. J. Geophys. Res., 83, 4029-4035.

    Article  Google Scholar 

  • Potemra T.A. and Zmuda A.J., 1970: Precipitating Energetic Electrons as an Ionization Source in the Midlatitude Nighttime D Region. J. Geophys. Res., 75, 7161-7167.

    Article  Google Scholar 

  • Siskind D.E., Barth C.A. and Cleary D.D., 1990: The Possible Effect of Solar Soft X-rays on Thermospheric Nitric Oxide. J. Geophys. Res., 95, 4311-4317.

    Article  Google Scholar 

  • Siskind D.E., Strickland D.J, Meier R.R., Majeed T. and Eparvier F.G., 1995: On the Relationship between the Solar Soft X-ray Flux and Thermospheric Nitric Oxide: An Update with an Improved Photoelectron Model. J. Geophys. Res., 100, 19697-19694.

    Google Scholar 

  • Stevens M.H., Siskind D.E., Hilsenrath E., Cebula R.P., Leitch J.W., Russell J.M. and Gordley L.L., 1997: Shuttle Solar Backscatter UV Observations of Nitric Oxide in the Upper Stratosphere, Mesosphere, and Thermosphere: Comparisons with the Halogen Occultation Experiment. J. Geophys. Res., 102, 9717-9727.

    Article  Google Scholar 

  • Tohmatsu T. and Iwagami N., 1975: Measurements of Nitric Oxide Distribution in the Upper Atmosphere. Space Research, XV, 241.

    Google Scholar 

  • Torkar K.M., Beran D., Friedrich M. and Lal S., 1985: Measurement of Nitric Oxide and Related Parameters in the Equatorial Mesosphere and Lower Thermosphere. Planet Space Sci., 33, 1169-1178.

    Article  Google Scholar 

  • Vampola A.L. and Gorney D.J., 1983: Electron Energy Deposition in the Middle Atmosphere. J. Geophys. Res., 88, 6267-6274.

    Article  Google Scholar 

  • Zinn J., Sutherland C.D. and Hay P.J., 1990b: On the Structures, Binding Energies and Entropies of the Complex Ions NO+ · N2, NO+ · O2 and NO+ · CO2. J. Geophys. Res., 95, 13909-13915.

    Article  Google Scholar 

  • Zinn J., Sutherland C.D., Stone S.N., Duncan L.M. and Behnke R., 1982: Ionospheric Effects of Rocket Exhaust Products — HEAO-C, Skylab. J. Atm. Terr. Phys., 44, 1143-1171.

    Article  Google Scholar 

  • Zinn J., Sutherland C.D. and Ganguly S., 1990: The Solar Flare of August 18, 1979: Incoherent Scatter Radar Data and Photochemical Model Comparisons. J. Geophys. Res., 95, 16705-16718.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguly, S., Zinn, J. Time-Variations of D-Region Electron Densities, and Comparisons With Model Computations. Studia Geophysica et Geodaetica 42, 500–510 (1998). https://doi.org/10.1023/A:1023397021520

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023397021520

Navigation