Skip to main content
Log in

Investigations of peptide hydration using NMR and molecular dynamics simulations: A study of effects of water on the conformation and dynamics of antamanide

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The influence of water binding on the conformational dynamics of the cyclic decapeptide antamanide dissolved in the model lipophilic environment chloroform is investigated by NMR relaxation measurements. The water-peptide complex has a lifetime of 35 μs at 250 K, which is longer than typical lifetimes of water-peptide complexes reported in aqueous solution. In addition, there is a rapid intracomplex mobility that probably involves librational motions of the bound water or water molecules hopping between different binding sites. Water binding restricts the flexibility of antamanide. The experimental findings are compared with GROMOS molecular dynamics simulations of antamanide with up to eight bound water molecules. Within the simulation time of 600 ps, no water molecule leaves the complex. Additionally, the simulations show a reduced flexibility for the complex in comparison with uncomplexed antamanide. Thus, there is a qualitative agreement between the experimental NMR results and the computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbragamA. (1961) Principles of Nuclear Magnetism, Clarendon Press, Oxford, U.K.

    Google Scholar 

  • BerendsenH.J.C., PostmaJ.P.M., vanGunsterenW.F., DiNolaA. and HaakJ.R. (1984) J. Chem. Phys. 91, 3684–3690.

    Article  ADS  Google Scholar 

  • BerendsenH.J.C., GrigeraJ.R. and StraatsmaT.P. (1987) J. Phys. Chem., 91, 6269–6271.

    Article  Google Scholar 

  • BlackledgeM.J., BrüschweilerR., GriesingerC., SchmidtJ.M., XuP. and ErnstR.R. (1993) Biochemistry, 32, 10960–10974.

    Article  Google Scholar 

  • BloomM., ReevesL.W. and WellsE.J. (1965) J. Chem. Phys., 42, 1615–1624.

    Article  ADS  Google Scholar 

  • Bothner-ByA.A., StephensR.L., LeeJ., WarrenC.D. and JeanlozR.W. (1984) J. Am. Chem. Soc., 106, 811–813.

    Article  Google Scholar 

  • BoydJ., HommelU. and CampbellI.D. (1990) Chem. Phys. Lett., 175, 477–482.

    Article  ADS  Google Scholar 

  • BremiT., ErnstM. and ErnstR.R. (1994) J. Phys. Chem., 98, 9322–9334.

    Article  Google Scholar 

  • BrunneR.M., vanGunsterenW.F., BrüschweilerR. and ErnstR.R. (1993) J. Am. Chem. Soc., 115, 4764–4768.

    Article  Google Scholar 

  • BrüschweilerR., BlackledgeM. and ErnstR.R. (1991) J. Biomol. NMR, 1, 3–11.

    Article  Google Scholar 

  • BrüschweilerR., RouxB., BlackledgeM.J., GriesingerC., KarplusM. and ErnstR.R. (1992) J. Am. Chem. Soc., 114, 2289–2302.

    Article  Google Scholar 

  • BurgermeisterW., WielandT. and WinklerR. (1974) Eur. J. Biochem., 44, 311–316.

    Article  Google Scholar 

  • CarrH.Y. and PurcellE.M. (1954) Phys. Rev., 94, 630–638.

    Article  ADS  Google Scholar 

  • deDiosA.C., PearsonJ.G. and OldfieldE. (1993a) Science, 260, 1491–1496.

    Article  ADS  Google Scholar 

  • deDiosA.C., PearsonJ.G. and OldfieldE. (1993b) J. Am. Chem. Soc., 115, 9768–9773.

    Article  Google Scholar 

  • DellwoM.J. and WandA.J. (1989) J. Am. Chem. Soc., 111, 4571–4578.

    Article  Google Scholar 

  • DenisovV.P. and HalleB. (1995a) J. Mol. Biol., 245, 682–697.

    Article  Google Scholar 

  • DenisovV.P. and HalleB. (1995b) J. Mol. Biol., 245, 698–709.

    Article  Google Scholar 

  • DeverellC., MorganR.E. and StrangeJ.H. (1970) Mol. Phys., 18, 553–559.

    Article  ADS  Google Scholar 

  • DietzW. and HeinzingerK. (1984) Ber. Buns. Phys. Chem., 88, 543–546.

    Google Scholar 

  • DietzW. and HeinzingerK. (1985) Ber. Buns. Phys. Chem., 89, 968–977.

    Google Scholar 

  • DoddrellD.M., PeggD.T. and BendallM.R. (1982) J. Magn. Reson., 85, 323–327.

    Google Scholar 

  • ErnstR.R., BodenhausenG. and WokaunA. (1987) Principles of NMR in One and Two Dimensions, Clarendon Press, Oxford, U.K.

    Google Scholar 

  • Gibby, C.W. and Hall, J. (1931) J. Chem. Soc., 691–693.

  • JanesN., GanapathyS. and OldfieldE. (1983) J. Magn. Reson., 54, 111–121.

    Google Scholar 

  • KamathU. and ShriverJ.W. (1989) J. Biol. Chem., 10, 5586–5592.

    Google Scholar 

  • KarleI.L., WielandT., SchermerD. and OttenheymH.C.J. (1979) Proc. Natl. Acad. Sci. USA, 76, 1532–1536.

    Article  ADS  Google Scholar 

  • KayL.E., JueT.L., BangerterB. and DemouP.C. (1987) J. Magn. Reson., 73, 558–564.

    Google Scholar 

  • KayL.E., TorchiaD.A. and BaxA. (1989) Biochemistry, 28, 8972–8979.

    Article  Google Scholar 

  • KayL.E., NicholsonL.K., DelaglioF., BaxA. and TorchiaD.A. (1992) J. Magn. Reson., 97, 359–375.

    Google Scholar 

  • KesslerH., GriesingerC., LautzJ., MüllerA., vanGunsterenW.F. and BerendsenH.J.C. (1988) J. Am. Chem. Soc., 110, 3393–3396.

    Article  Google Scholar 

  • KumarA., WagnerG., ErnstR.R. and WüthrichK. (1981) J. Am. Chem. Soc., 103, 3654–3658.

    Article  Google Scholar 

  • LipariG. and SzaboA. (1982a) J. Am. Chem. Soc., 104, 4546–4559.

    Article  Google Scholar 

  • LipariG. and SzaboA. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Article  Google Scholar 

  • MacuraS. and ErnstR.R. (1980) Mol. Phys., 41, 95–117. 112, 2908–2914.

    Article  Google Scholar 

  • MarionD. and WüthrichK. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.

    Article  Google Scholar 

  • MarkA.E., vanHeldenS.P., SmithP.E., JanssenL.H.H. and vanGunsterenW.F. (1994) J. Am. Chem. Soc., 116, 6293–6302.

    Article  Google Scholar 

  • MarquardtD.W. (1963) J. Soc. Ind. Appl. Math., 11, 431–441.

    Article  MATH  MathSciNet  Google Scholar 

  • MeiboomS. and GillD. (1958) Rev. Sci. Instrum., 29, 688–691.

    Article  ADS  Google Scholar 

  • NaitoA., GanapathyS., AkasakaK. and McDowellC.A. (1981) J. Chem. Phys., 74, 3190–3197.

    Article  ADS  Google Scholar 

  • NaitoA., GanapathyS., RaghunathanP. and McDowellC.A. (1983) J. Chem. Phys., 79, 4173–4182.

    Article  ADS  Google Scholar 

  • NaitoA. and McDowellC.A. (1983) J. Chem. Phys., 81, 4795–4803.

    Article  ADS  Google Scholar 

  • NirmalaN.R. and WagnerG. (1989) J. Magn. Reson., 82, 659–661.

    Google Scholar 

  • NoggleJ.H. and SchirmerR.E. (1971) The Nuclear Overhauser Effect, Academic Press, New York, NY, U.S.A.

    Google Scholar 

  • OttingG. and WüthrichK. (1989) J. Am. Chem. Soc., 111, 1871–1875.

    Article  Google Scholar 

  • OttingG., LiepinshE. and WüthrichK. (1991) Science, 254, 974–980.

    Article  ADS  Google Scholar 

  • PalmerIIIA.G., RanceM. and WrightP.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.

    Article  Google Scholar 

  • PalmerIIIA.G., SkeltonN.J., ChazinW.J., WrightP.E. and RanceM. (1992) Mol. Phys., 75, 699–711.

    Article  ADS  Google Scholar 

  • PastoreA. and SaudekV. (1990) J. Magn. Reson., 90, 165–176.

    Google Scholar 

  • PatelD.J. (1973) Biochemistry, 12, 667–688.

    Article  Google Scholar 

  • PengJ.W., ThanabalV. and WagnerG. (1991) J. Magn. Reson., 95, 421–427.

    Google Scholar 

  • PressW.H., FlanneryB.P., TeukolskyS.A. and VetterlingW.T. (1988) Numerical Recipes in C—the Art of Scientific Computing, Cambridge University Press, New York, NY, U.S.A., pp. 540–547.

    MATH  Google Scholar 

  • RedfieldA.G. (1955) Phys. Rev., 98, 1787–1809.

    Article  ADS  Google Scholar 

  • RyckaertJ.-P., CiccottiG. and BerendsenH.J.C. (1977) J. Comput. Phys., 23, 327–341.

    Article  ADS  Google Scholar 

  • SchmidtJ.M., BrüschweilerR., ErnstR.R., DunbrackR.L., JosephsD. and KarplusM. (1993) J. Am. Chem. Soc., 115, 8747–8753.

    Article  Google Scholar 

  • SklenářV., TorchiaD. and BaxA. (1987) J. Magn. Reson., 73, 375–379.

    Google Scholar 

  • SperaS. and BaxA. (1991) J. Am. Chem. Soc., 113, 5490–5492.

    Article  Google Scholar 

  • TironiI.G. and vanGunsterenW.F. (1994) Mol. Phys., 83, 381–403.

    Article  ADS  Google Scholar 

  • vanGunsterenW.F. and BerendsenH.J.C. (1987) Groningen Molecular Simulation (GROMOS) Library Manual, Biomos, Groningen, The Netherlands.

    Google Scholar 

  • WagnerG., PardiA. and WüthrichK. (1983) J. Am. Chem. Soc., 105, 5948–5949.

    Article  Google Scholar 

  • WielandT., FaulstichH. and BurgermeisterW. (1972) Biochem. Biophys. Res. Commun., 47, 984–992.

    Article  Google Scholar 

  • WielandT. and FaulstichH. (1978) Crit. Rev. Biochem., 5, 185–260.

    Article  Google Scholar 

  • WishartD.S., SykesB.D. and RichardsF.M. (1991) J. Mol. Biol., 222, 311–333.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J.W., Schiffer, C.A., Xu, P. et al. Investigations of peptide hydration using NMR and molecular dynamics simulations: A study of effects of water on the conformation and dynamics of antamanide. J Biomol NMR 8, 453–476 (1996). https://doi.org/10.1007/BF00228147

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00228147

Keywords

Navigation